首页> 外文期刊>Journal of statistical computation and simulation >Comparative survey on nonlinear filtering methods: the quantization and the particle filtering approaches
【24h】

Comparative survey on nonlinear filtering methods: the quantization and the particle filtering approaches

机译:非线性滤波方法比较研究:量化和粒子滤波方法

获取原文
获取原文并翻译 | 示例

摘要

We provide a comparative study between two different approaches to construct nonlinear filter estimators: on the one hand grid methods using zero-order and first-order quantization schemes, and on the other hand particle filtering algorithms using sequential importance sampling or resampling. For each method, numerical implementation is explicited in addition to convergence arguments and algorithmic complexity. Numerical examples are then given over three state space models: the Kalman filter case, the canonical stochastic volatility model and the infinite dimension explicit filter introduced in [Genon-Catalot, V, 2003, A non linear explicit filter. Statistics and Probability Letters, 61, 145-154].
机译:我们提供了两种构造非线性滤波器估计器的方法的比较研究:一方面使用零阶和一阶量化方案的网格方法,另一方面使用顺序重要性采样或重采样的粒子滤波算法。对于每种方法,除了收敛参数和算法复杂性外,还明确采用了数字实现。然后在三个状态空间模型上给出了数值示例:卡尔曼滤波器案例,规范随机波动率模型和在[Genon-Catalot,V,2003,A非线性显式滤波器中引入的无限维显式滤波器。统计与概率快报,第61卷,第145-154页]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号