首页> 外文期刊>Journal of statistical computation and simulation >Maximum-likelihood estimation of the random-clumped multinomial model as a prototype problem for large-scale statistical computing
【24h】

Maximum-likelihood estimation of the random-clumped multinomial model as a prototype problem for large-scale statistical computing

机译:随机聚集多项式模型的最大似然估计作为大规模统计计算的原型问题

获取原文
获取原文并翻译 | 示例

摘要

Numerical methods are needed to obtain maximum-likelihood estimates (MLEs) in many problems. Computation time can be an issue for some likelihoods even with modern computing power. We consider one such problem where the assumed model is a random-clumped multinomial distribution. We compute MLEs for this model in parallel using the Toolkit for Advanced Optimization software library. The computations are performed on a distributed-memory cluster with low latency interconnect. We demonstrate that for larger problems, scaling the number of processes improves wall clock time significantly. An illustrative example shows how parallel MLE computation can be useful in a large data analysis. Our experience with a direct numerical approach indicates that more substantial gains may be obtained by making use of the specific structure of the random-clumped model.
机译:需要使用数值方法来获得许多问题中的最大似然估计(MLE)。即使使用现代计算能力,对于某些可能性而言,计算时间也可能是一个问题。我们考虑一个这样的问题,其中假设的模型是随机聚集的多项式分布。我们使用“高级优化工具包”软件库为此模型并行计算MLE。这些计算是在具有低延迟互连的分布式内存群集上执行的。我们证明,对于较大的问题,按比例缩放进程数可以显着缩短挂钟时间。一个说明性示例说明了并行MLE计算在大数据分析中如何有用。我们使用直接数值方法的经验表明,通过利用随机聚集模型的特定结构可以获得更大的收益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号