首页> 外文期刊>Signal Processing, IEEE Transactions on >Detection–Estimation of Very Close Emitters: Performance Breakdown, Ambiguity, and General Statistical Analysis of Maximum-Likelihood Estimation
【24h】

Detection–Estimation of Very Close Emitters: Performance Breakdown, Ambiguity, and General Statistical Analysis of Maximum-Likelihood Estimation

机译:检测–非常接近的发射器估算:性能崩溃,歧义和最大似然估计的一般统计分析

获取原文
获取原文并翻译 | 示例

摘要

We reexamine the well-known problem of “threshold behavior” or “performance breakdown” in the detection-estimation of very closely spaced emitters. In this extreme regime, we analyze the performance for maximum-likelihood estimation (MLE) of directions-of-arrival (DOA) for two close Gaussian sources over the range of sample volumes and signal-to-noise ratios (SNRs) where the correct number of sources is reliably estimated by information-theoretic criteria (ITC), but where one of the DOA estimates is severely erroneous (“outlier”). We show that random matrix theory (RMT) applied to the evaluation of theoretical MLE performance gives a relatively simple and accurate analytical description of the threshold behavior of MLE and ITC. In particular, the introduced “single-cluster” criterion provides accurate “ambiguity bounds” for the outliers.
机译:我们在非常紧密间隔的发射器的检测估计中重新研究了众所周知的“阈值行为”或“性能崩溃”问题。在这种极端情况下,我们分析了在样本量和信噪比(SNR)正确的情况下,两个接近的高斯源的到达方向(DOA)的最大可能似然估计(MLE)的性能通过信息理论标准(ITC)可以可靠地估计源的数量,但是DOA估计之一严重错误时(“异常值”)。我们表明,将随机矩阵理论(RMT)应用于理论MLE性能评估中,可以对MLE和ITC的阈值行为进行相对简单而准确的分析描述。尤其是,引入的“单聚类”标准为异常值提供了准确的“模糊边界”。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号