首页> 外文期刊>Journal of statistical computation and simulation >A more efficient Gibbs sampler estimation using steady-state simulation: applications to public health studies
【24h】

A more efficient Gibbs sampler estimation using steady-state simulation: applications to public health studies

机译:使用稳态模拟的更有效的吉布斯采样器估计:在公共卫生研究中的应用

获取原文
获取原文并翻译 | 示例

摘要

Markov chain Monte Carlo methods, in particular, the Gibbs sampler, are widely used algorithms both in application and theoretical works in the classical and Bayesian paradigms. However, these algorithms are often computer intensive. Samawi et al. [Steady-state ranked Gibbs sampler. J. Stat. Comput. Simul. 2012;82(8), 1223-1238. doi:10.1080/00949655.2011.575378] demonstrate through theory and simulation that the dependent steady-state Gibbs sampler is more efficient and accurate in model parameter estimation than the original Gibbs sampler. This paper proposes the independent steady-state Gibbs sampler (ISSGS) approach to improve the original Gibbs sampler in multidimensional problems. It is demonstrated that ISSGS provides accuracy with unbiased estimation and improves the performance and convergence of the Gibbs sampler in multidimensional problems.
机译:马尔可夫链蒙特卡罗方法,特别是Gibbs采样器,在古典和贝叶斯范式的应用和理论工作中被广泛使用。但是,这些算法通常是计算机密集型的。 Samawi等。 [稳定状态排名Gibbs采样器。 J.统计计算同谋2012; 82(8),1223-1238。 doi:10.1080 / 00949655.2011.575378]通过理论和仿真证明,相依稳态Gibbs采样器在模型参数估计方面比原始Gibbs采样器更加有效和准确。本文提出了独立的稳态Gibbs采样器(ISSGS)方法,以改进多维问题中的原始Gibbs采样器。事实证明,ISSGS可提供无偏估计的准确性,并改善了多维问题中Gibbs采样器的性能和收敛性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号