首页> 外文期刊>Journal of statistical computation and simulation >Simulating random variables using moment-generating functions and the saddlepoint approximation
【24h】

Simulating random variables using moment-generating functions and the saddlepoint approximation

机译:使用矩生成函数和鞍点逼近法模拟随机变量

获取原文
获取原文并翻译 | 示例

摘要

When we are given only a transform such as the moment-generating function of a distribution, it is rare that we can efficiently simulate random variables. Possible approaches such as the inverse transform using numerical inversion of the transform are computationally very expensive. However, the saddlepoint approximation is known to be exact for the Normal, Gamma, and inverse Gaussian distribution and remarkably accurate for a large number of others. We explore the efficient use of the saddlepoint approximation for simulating distributions and provide three examples of the accuracy of these simulations.
机译:当仅给出诸如分布的矩生成函数之类的变换时,很难有效地模拟随机变量。诸如使用变换的数值反演的反变换之类的可能方法在计算上非常昂贵。但是,已知鞍点逼近对于正态分布,伽马分布和高斯逆分布是精确的,而对于许多其他分布,则非常精确。我们探索有效地利用鞍点近似来模拟分布,并提供了三个模拟精度的示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号