首页> 外文期刊>Journal of statistical computation and simulation >Modified likelihood ratio tests in heteroskedastic multivariate regression models with measurement error
【24h】

Modified likelihood ratio tests in heteroskedastic multivariate regression models with measurement error

机译:具有测量误差的异方差多元回归模型中的修正似然比检验

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we develop modified versions of the likelihood ratio test for multivariate heteroskedastic errors-in-variables regression models. The error terms are allowed to follow a multivariate distribution in the elliptical class of distributions, which has the normal distribution as a special case. We derive the Skovgaard-adjusted likelihood ratio statistics, which follow a chi-squared distribution with a high degree of accuracy. We conduct a simulation study and show that the proposed tests display superior finite sample behaviour as compared to the standard likelihood ratio test. We illustrate the usefulness of our results in applied settings using a data set from the WHO MONICA Project on cardiovascular disease.
机译:在本文中,我们为多元异方差变量误差回归模型开发了似然比检验的修改版本。允许误差项遵循椭圆分布分布中的多元分布,在特殊情况下,该分布具有正态分布。我们推导了经过Skovgaard调整的似然比统计量,该统计量遵循卡方分布,具有很高的准确性。我们进行了仿真研究,结果表明,与标准似然比测试相比,所提出的测试显示出出众的有限样本行为。我们使用WHO MONICA心血管疾病项目的数据集来说明我们的结果在应用环境中的有用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号