首页> 外文期刊>Journal of statistical computation and simulation >Bayesian estimation of varying-coefficient models with missing data, with application to the Singapore Longitudinal Aging Study
【24h】

Bayesian estimation of varying-coefficient models with missing data, with application to the Singapore Longitudinal Aging Study

机译:缺失数据的变系数模型的贝叶斯估计及其在新加坡纵向老龄化研究中的应用

获取原文
获取原文并翻译 | 示例

摘要

Motivated by the Singapore Longitudinal Aging Study (SLAS), we propose a Bayesian approach for the estimation of semiparametric varying-coefficient models for longitudinal continuous and cross-sectional binary responses. These models have proved to be more flexible than simple parametric regression models. Our development is a new contribution towards their Bayesian solution, which eases computational complexity. We also consider adapting all kinds of familiar statistical strategies to address the missing data issue in the SLAS. Our simulation results indicate that a Bayesian imputation (BI) approach performs better than complete-case (CC) and available-case (AC) approaches, especially under small sample designs, and may provide more useful results in practice. In the real data analysis for the SLAS, the results for longitudinal outcomes from BI are similar to AC analysis, differing from those with CC analysis.
机译:受新加坡纵向老化研究(SLAS)的启发,我们提出了一种贝叶斯方法来估计纵向连续和横截面二元响应的半参数变系数模型。事实证明,这些模型比简单的参数回归模型更灵活。我们的发展为他们的贝叶斯解决方案做出了新的贡献,从而简化了计算复杂性。我们还考虑采用各种熟悉的统计策略来解决SLAS中的缺失数据问题。我们的仿真结果表明,贝叶斯插补(BI)方法比完全案例(CC)和可用案例(AC)方法的效果更好,尤其是在小样本设计下,并且在实践中可能会提供更多有用的结果。在SLAS的真实数据分析中,BI的纵向结果与AC分析相似,与CC分析不同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号