首页> 外文期刊>Journal of statistical computation and simulation >Bayesian inference of asymmetric stochastic conditional duration models
【24h】

Bayesian inference of asymmetric stochastic conditional duration models

机译:非对称随机条件工期模型的贝叶斯推断

获取原文
获取原文并翻译 | 示例

摘要

This paper extends stochastic conditional duration (SCD) models for financial transaction data to allow for correlation between error processes and innovations of observed duration process and latent log duration process. Suitable algorithms of Markov Chain Monte Carlo (MCMC) are developed to fit the resulting SCD models under various distributional assumptions about the innovation of the measurement equation. Unlike the estimation methods commonly used to estimate the SCD models in the literature, we work with the original specification of the model, without subjecting the observation equation to a logarithmic transformation. Results of simulation studies suggest that our proposed models and corresponding estimation methodology perform quite well. We also apply an auxiliary particle filter technique to construct one-step-ahead in-sample and out-of-sample duration forecasts of the fitted models. Applications to the IBM transaction data allow comparison of our models and methods to those existing in the literature.
机译:本文扩展了金融交易数据的随机条件持续时间(SCD)模型,以使错误过程与观测持续时间过程和潜在日志持续时间过程的创新之间具有相关性。在有关测量方程创新的各种分布假设下,开发了马尔可夫链蒙特卡罗(MCMC)的合适算法来拟合所得的SCD模型。与文献中通常用于估计SCD模型的估计方法不同,我们使用模型的原始规范,而无需对观察方程进行对数转换。仿真研究结果表明,我们提出的模型和相应的估计方法表现良好。我们还应用了辅助粒子滤波技术来构建拟合模型的一步一步采样内和采样外持续时间预测。 IBM交易数据的应用程序允许将我们的模型和方法与文献中现有的模型和方法进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号