首页> 外文期刊>Journal of statistical computation and simulation >Fitting the generalized lambda distribution to pre-binned data
【24h】

Fitting the generalized lambda distribution to pre-binned data

机译:将广义lambda分布拟合到预合并的数据

获取原文
获取原文并翻译 | 示例

摘要

Density estimation for pre-binned data is challenging due to the loss of exact position information of the original observations. Traditional kernel density estimation methods cannot be applied when data are pre-binned in unequally spaced bins or when one or more bins are semi-infinite intervals. We propose a novel density estimation approach using the generalized lambda distribution (GLD) for data that have been pre-binned over a sequence of consecutive bins. This method enjoys the high power of the parametric model and the great shape flexibility of the GLD. The performances of the proposed estimators are benchmarked via simulation studies. Both simulation results and a real data application show that the proposed density estimators work well for data of moderate or large sizes.
机译:由于丢失了原始观测值的准确位置信息,因此对预合并数据的密度估计具有挑战性。当数据在不等间隔的仓中预合并或一个或多个仓为半无限间隔时,传统的核密度估计方法将无法应用。我们提出了一种新的密度估计方法,该方法使用广义lambda分布(GLD)来处理已在一系列连续bin上进行预合并的数据。该方法具有参数化模型的强大功能和GLD的出色形状灵活性。拟议估计量的性能通过模拟研究进行基准测试。仿真结果和实际数据应用均表明,所提出的密度估计器适用于中等或较大尺寸的数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号