首页> 外文期刊>Journal of statistical computation and simulation >Quantile regression methods for left-truncated and right-censored data
【24h】

Quantile regression methods for left-truncated and right-censored data

机译:左截断和右删截数据的分位数回归方法

获取原文
获取原文并翻译 | 示例

摘要

Left-truncated and right-censored (LTRC) data are encountered frequently due to a prevalent cohort sampling in follow-up studies. Because of the skewness of the distribution of survival time, quantile regression is a useful alternative to the Cox's proportional hazards model and the accelerated failure time model for survival analysis. In this paper, we apply the quantile regression model to LTRC data and develops an unbiased estimating equation for regression coefficients. The proposed estimation methods use the inverse probabilities of truncation and censoring weighting technique. The resulting estimator is uniformly consistent and asymptotically normal. The finite-sample performance of the proposed estimation methods is also evaluated using extensive simulation studies. Finally, analysis of real data is presented to illustrate our proposed estimation methods.
机译:由于后续研究中存在大量队列样本,因此经常遇到左截断和右删截(LTRC)数据。由于生存时间分布的偏斜性,分位数回归是替代Cox比例风险模型和加速故障时间模型进行生存分析的有用替代方法。在本文中,我们将分位数回归模型应用于LTRC数据,并为回归系数建立了一个无偏估计方程。所提出的估计方法使用了截断和检查加权技术的逆概率。所得的估计量是一致一致的,并且是渐近正态的。所提出的估计方法的有限样本性能也通过广泛的仿真研究进行了评估。最后,对真实数据进行分析以说明我们提出的估算方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号