首页> 外文期刊>Journal of statistical computation and simulation >Small area estimation strategies for large population surveys: acomparison of design and model-based methods
【24h】

Small area estimation strategies for large population surveys: acomparison of design and model-based methods

机译:大型人口调查的小面积估计策略:设计方法和基于模型的方法的比较

获取原文
获取原文并翻译 | 示例

摘要

Small area estimation (SAE) concerns with how to reliably estimate population quantities of interest when some areas or domains have very limited samples. This is an important issue in large population surveys, because the geographical areas or groups with only small samples or even no samples are often of interest to researchers and policy-makers. For example, large population health surveys, such as Behavioural Risk Factor Surveillance System and Ohio Mecaid Assessment Survey (OMAS), are regularly conducted for monitoring insurance coverage and healthcare utilization. Classic approaches usually provide accurate estimators at the state level or large geographical region level, but they fail to provide reliable estimators for many rural counties where the samples are sparse. Moreover, a systematic evaluation of the performances of the SAE methods in real-world setting is lacking in the literature. In this paper, we propose a Bayesian hierarchical model with constraints on the parameter space and show that it provides superior estimators for county-level adult uninsured rates in Ohio based on the 2012 OMAS data. Furthermore, we perform extensive simulation studies to compare our methods with a collection of common SAE strategies, including direct estimators, synthetic estimators, composite estimators, and Datta GS, Ghosh M, Steorts R, Maples J.'s [Bayesian benchmarking with applications to small area estimation. Test 2011;20(3):574-588] Bayesian hierarchical model-based estimators. To set a fair basis for comparison, we generate our simulation data with characteristics mimicking the real OMAS data, so that neither model-based nor design-based strategies use the true model specification. The estimators based on our proposed model are shown to outperform other estimators for small areas in both simulation study and real data analysis.
机译:小面积估计(SAE)涉及当某些区域或领域的样本非常有限时,如何可靠地估计感兴趣的人口数量。这是大型人口调查中的一个重要问题,因为研究人员和决策者通常只关注样本很少甚至没有样本的地理区域或群体。例如,定期进行大型人群健康调查,例如行为风险因素监视系统和俄亥俄州医疗补助评估调查(OMAS),以监视保险范围和医疗保健利用率。经典方法通常可以在州或大型地理区域级别提供准确的估算器,但是它们无法为样本稀少的许多农村县提供可靠的估算器。此外,文献中缺乏对SAE方法在实际环境中的性能的系统评价。在本文中,我们提出了一个在参数空间上受约束的贝叶斯层次模型,并表明该模型基于2012年OMAS数据为俄亥俄州的县级成人未保险费率提供了更好的估计。此外,我们进行了广泛的模拟研究,以将我们的方法与一系列常见的SAE策略进行比较,包括直接估计器,合成估计器,复合估计器,以及Datta GS,Ghosh M,Steorts R,Maples J.的[贝叶斯基准测试及其在小面积估算。 Test 2011; 20(3):574-588]基于贝叶斯层次模型的估计量。为了提供公平的比较基础,我们生成的模拟数据具有模仿实际OMAS数据的特征,因此基于模型的策略和基于设计的策略都不会使用真实的模型规范。在仿真研究和真实数据分析中,基于我们提出的模型的估计量均显示出优于其他估计量的小面积估计量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号