首页> 外文OA文献 >Small area estimation for spatially correlated populations - a comparison of direct and indirect model-based methods
【2h】

Small area estimation for spatially correlated populations - a comparison of direct and indirect model-based methods

机译:空间相关种群的小面积估计 - 基于直接和间接模型的方法的比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Linear mixed models underpin many small area estimation (SAE) methods. In this paper we investigate SAE based on linear models with spatially correlated small area effects where the neighbourhood structure is described by a contiguity matrix. Such models allow efficient use of spatial auxiliary information in SAE. In particular, we use simulation studies to compare the performances of model-based direct estimation (MBDE) and empirical best linear unbiased prediction (EBLUP) under such models. These simulations are based on theoretically generated populations as well as data obtained from two real populations (the ISTAT farm structure survey in Tuscany and the US Environmental Monitoring and Assessment Program survey). Our empirical results show only marginal gains when spatial dependence between areas is incorporated into the SAE model.
机译:线性混合模型是许多小面积估计(SAE)方法的基础。在本文中,我们研究了基于线性模型的SAE,该线性模型具有空间相关的小区域效应,其中邻域结构由连续性矩阵描述。这样的模型允许有效利用SAE中的空间辅助信息。特别是,我们使用仿真研究来比较在此类模型下基于模型的直接估计(MBDE)和经验最佳线性无偏预测(EBLUP)的性能。这些模拟基于理论上生成的种群以及从两个实际种群获得的数据(托斯卡纳的ISTAT农场结构调查和美国环境监测与评估计划调查)。我们的经验结果表明,将区域之间的空间依赖性纳入SAE模型时,只能获得边际收益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号