首页> 外文期刊>Journal of statistical computation and simulation >Minimum Hellinger distance estimation for a semiparametric location-shifted mixture model
【24h】

Minimum Hellinger distance estimation for a semiparametric location-shifted mixture model

机译:半参数位置偏移混合模型的最小Hellinger距离估计

获取原文
获取原文并翻译 | 示例

摘要

In this article, we propose a minimum Hellinger distance estimation (MHDE) for a semiparametric two-component mixture model where the two components are unknown location-shifted symmetric distributions f(x - mu(1)) and f(x - mu(2)). In the construction of MHDE, an appropriate estimation of the unknown nuisance parameter f is required. We propose to use the inversion formula given in Bordes et al. to estimate f based on current available sample from the mixture. To obtain the MHDE, an algorithm is presented to ease the numerical calculation. We also propose a simple but intuitive and robust initial estimator of the parameters. To assess its performance, we carry out a simulation study with comparison with a minimum profile Hellinger distance estimator (MPHDE) given in Wu et al. We use the proposed estimator to analyse the Old Faithful Geyser data in order to demonstrate its application. Through the numerical studies, we observe that our proposed MHDE for this semiparametric mixture model inherits the desired robustness and efficiency properties of that for parametric models. The proposed MHDE is very competitive with the MPHDE when there is no data contamination, whereas it performs better than the MPHDE in terms of bias when data is contaminated with outliers. Moreover, the MHDE reduces significantly the computing time of the MPHDE.
机译:在本文中,我们为半参数两成分混合模型提出了最小Hellinger距离估计(MHDE),其中两个成分是未知的位置偏移对称分布f(x-mu(1))和f(x-mu(2) ))。在MHDE的构造中,需要适当地估计未知的讨厌参数f。我们建议使用Bordes等人给出的反演公式。根据混合物中可用的当前样本估算f。为了获得MHDE,提出了一种简化数值计算的算法。我们还提出了一个简单但直观且健壮的参数初始估计器。为了评估其性能,我们进行了仿真研究,并与Wu等人给出的最小轮廓Hellinger距离估算器(MPHDE)进行了比较。我们使用拟议的估算器来分析“老忠实间歇泉”数据,以证明其应用。通过数值研究,我们观察到我们针对此半参数混合模型提出的MHDE继承了参数模型所需的鲁棒性和效率属性。在没有数据污染的情况下,拟议的MHDE与MPHDE极具竞争力,而在数据被异常值污染时,其偏向性能要优于MPHDE。此外,MHDE大大减少了MPHDE的计算时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号