首页> 外文期刊>Journal of VLSI signal processing systems >Fusion of Map and Sensor Data in a Modern Car Navigation System
【24h】

Fusion of Map and Sensor Data in a Modern Car Navigation System

机译:现代汽车导航系统中地图和传感器数据的融合

获取原文
获取原文并翻译 | 示例

摘要

The main tasks of car navigation systems are positioning, routing, and guidance. This paper describes a novel, two-step approach to vehicle positioning founded on the appropriate combination of the in-car sensors, GPS signals, and a digital map. The first step is based on the application of a Kalman filter, which optimally updates the model of car movement based on the in-car odometer and gyroscope measurements, and the GPS signal. The second step further improves the position estimate by dynamically comparing the continuous vehicle trajectory obtained in the first step with the candidate trajectories on a digital map. This is in contrast with standard applications of the digital map where the current position estimate is simply projected on the digital map at every sampling instant.
机译:汽车导航系统的主要任务是定位,路线选择和引导。本文介绍了一种新颖的两步式车辆定位方法,该方法基于车内传感器,GPS信号和数字地图的适当组合。第一步基于卡尔曼滤波器的应用,该滤波器基于车内里程表和陀螺仪测量值以及GPS信号来最佳地更新汽车运动模型。第二步通过动态比较第一步中获得的连续车辆轨迹与数字地图上的候选轨迹来改善位置估计。这与数字地图的标准应用相反,数字地图的标准应用仅在每个采样时刻将当前位置估算简单地投影到数字地图上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号