首页> 外文期刊>Journal of VLSI signal processing systems >Performance Analysis of General-Purpose Computation on Commodity Graphics Hardware: A Case Study Using Bioinformatics
【24h】

Performance Analysis of General-Purpose Computation on Commodity Graphics Hardware: A Case Study Using Bioinformatics

机译:商品图形硬件上通用计算的性能分析:使用生物信息学的案例研究

获取原文
获取原文并翻译 | 示例

摘要

Using modern graphics processing units for no-graphics high performance computing is motivated by their enhanced programmability, attractive cost/performance ratio and incredible growth in speed. Although the pipeline of a modern graphics processing unit (GPU) permits high throughput and more concurrency, they bring more complexities in analyzing the performance of GPU-based applications. In this paper, we identify factors that determine performance of GPU-based applications. We then classify them into three categories: data-linear, data-constant and computation-dependent. According to the characteristics of these factors, we propose a performance model for each factor. These models are then used to predict the performance of bio-sequence database scanning application on GPUs. Theoretical analyses and measurements show that our models can achieve precise performance predictions.
机译:将现代图形处理单元用于无图形功能,是因为它们具有增强的可编程性,有吸引力的成本/性能比以及惊人的速度增长,从而推动了高性能计算的发展。尽管现代图形处理单元(GPU)的管道允许高吞吐量和更多的并发性,但是它们在分析基于GPU的应用程序的性能时却带来了更多的复杂性。在本文中,我们确定了决定基于GPU的应用程序性能的因素。然后,我们将它们分为三类:数据线性,数据常量和计算相关。根据这些因素的特征,我们为每个因素提出一个绩效模型。然后将这些模型用于预测GPU上生物序列数据库扫描应用程序的性能。理论分析和测量表明,我们的模型可以实现精确的性能预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号