首页> 外文期刊>Journal of signal processing systems for signal, image, and video technology >Parallelization Strategies and Performance Analysis of Media Mining Applications on Multi-Core Processors
【24h】

Parallelization Strategies and Performance Analysis of Media Mining Applications on Multi-Core Processors

机译:多核处理器上媒体挖掘应用程序的并行化策略和性能分析

获取原文
获取原文并翻译 | 示例

摘要

This paper studies how to parallelize the emerging media mining workloads on existing small-scale multi-core processors and future large-scale platforms. Media mining is an emerging technology to extract meaningful knowledge from large amounts of multimedia data, aiming at helping end users search, browse, and manage multimedia data. Many of the media mining applications are very complicated and require a huge amount of computing power. The advent of multi-core architectures provides the acceleration opportunity for media mining. However, to efficiently utilize the multi-core processors, we must effectively execute many threads at the same time. In this paper, we present how to explore the multi-core processors to speed up the computation-intensive media mining applications. We first parallelize two media mining applications by extracting the coarsegrained parallelism and evaluate their parallel speedups on a small-scale multi-core system. Our experiment shows that the coarse-grained parallelization achieves good scaling performance, but not perfect. When examining the memory requirements, we find that these coarse-grained parallelized workloads expose high memory demand. Their working set sizes increase almost linearly with the degree of parallelism, and the instantaneous memory bandwidth usage prevents them from perfect scalability on the 8-core machine. To avoid the memory bandwidth bottleneck, we turn to exploit the fine-grained parallelism and evaluate the parallel performance on the 8-core machine and a simulated 64-core processor. Experimental data show that the fine-grained parallelization demonstrates much lower memory requirements than the coarse-grained one, but exhibits significant read-write data sharing behavior. Therefore, the expensive inter-thread communication limits the parallel speedup on the 8-core machine, while excellent speedup is observed on the large-scale processor as fast core-to-core communication is provided via a shared cache. Our study suggests that (1) extracting the coarse-grained parallelism scales well on small-scale platforms, but poorly on large-scale system; (2) exploiting the fine-grained parallelism is suitable to realize the power of large-scale platforms; (3) future many-core chips can provide shared cache and sufficient on-chip interconnect bandwidth to enable efficient inter-core communication for applications with significant amounts of shared data. In short, this work demonstrates proper parallelization techniques are critical to the performance of multi-core processors. We also demonstrate that one of the important factors in parallelization is the performance analysis. The parallelization principles, practice, and performance analysis methodology presented in this paper are also useful for everyone to exploit the thread-level parallelism in their applications.
机译:本文研究如何在现有的小型多核处理器和未来的大型平台上并行化新兴媒体挖掘工作负载。媒体挖掘是一种从大量多媒体数据中提取有意义的知识的新兴技术,旨在帮助最终用户搜索,浏览和管理多媒体数据。许多媒体挖掘应用程序非常复杂,需要大量的计算能力。多核体系结构的出现为媒体挖掘提供了加速机会。但是,为了有效利用多核处理器,我们必须同时有效地执行多个线程。在本文中,我们介绍了如何探索多核处理器以加速计算密集型媒体挖掘应用程序。我们首先通过提取粗粒度并行度来并行化两个媒体挖掘应用程序,并在小型多核系统上评估它们的并行加速。我们的实验表明,粗粒度并行化可实现良好的缩放性能,但并不完美。在检查内存需求时,我们发现这些粗粒度的并行工作负载暴露了很高的内存需求。它们的工作集大小几乎随并行度线性增加,并且瞬时内存带宽的使用使它们无法在8核计算机上实现完美的可伸缩性。为了避免内存带宽瓶颈,我们转向利用细粒度的并行机制,并在8核计算机和模拟的64核处理器上评估并行性能。实验数据表明,细粒度并行化显示的内存要求比粗粒度并行化要低得多,但是表现出显着的读写数据共享行为。因此,昂贵的线程间通信限制了8核计算机上的并行加速,而大型处理器上则观察到出色的加速,因为通过共享缓存提供了快速的核对核通信。我们的研究表明:(1)在小规模平台上提取粗粒度并行度的规模很好,而在大规模系统上则较差; (2)利用细粒度的并行性适合实现大型平台的功能; (3)未来的多核芯片可以提供共享的缓存和足够的片上互连带宽,从而为具有大量共享数据的应用程序实现有效的内核间通信。简而言之,这项工作证明了适当的并行化技术对于多核处理器的性能至关重要。我们还证明了并行化的重要因素之一是性能分析。本文介绍的并行化原理,实践和性能分析方法对于每个人在其应用程序中利用线程级并行性也很有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号