首页> 外文期刊>Journal of signal processing systems for signal, image, and video technology >Combining Coarse-Grained Software Pipelining with DVS for Scheduling Real-Time Periodic Dependent Tasks on Multi-Core Embedded Systems
【24h】

Combining Coarse-Grained Software Pipelining with DVS for Scheduling Real-Time Periodic Dependent Tasks on Multi-Core Embedded Systems

机译:将粗粒度的软件流水线与DVS相结合,以调度多核嵌入式系统上的实时周期性相关任务

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we combine coarse-grained software pipelining with DVS (Dynamic Voltage/Frequency Scaling) for optimizing energy consumption of stream-based multimedia applications on multi-core embedded systems. By exploiting the potential of multi-core architecture and the characteristic of streaming applications, we propose a two-phase approach to solve the energy minimization problem for periodic dependent tasks on multi-core processors with discrete voltage levels. With our approach, in the first phase, we propose a coarse-grained task-level software pipelining algorithm called RDAG to transform the periodic dependent tasks into a set of independent tasks based on the retiming technique (Leiserson and Saxe, Algorithmica 6:5-35, 1991). In the second phase, we propose two DVS scheduling algorithms for energy minimization. For single-core processors, we propose a pseudo-polynomial algorithm based on dynamic programming that can achieve optimal solution. For multi-core processors, we propose a novel scheduling algorithm called SpringS which works like a spring and can effectively reduce energy consumption by itera-tively adjusting task scheduling and voltage selection. We conduct experiments with a set of benchmarks from E3S (Dick 2008) and TGFF based on the power model of the AMD Mobile Athlon4 DVS processor. The experimental results show that our technique can achieve 12.7% energy saving compared with the algorithms in Zhang et al. (2002) on average.
机译:在本文中,我们将粗粒度软件流水线与DVS(动态电压/频率缩放)相结合,以优化多核嵌入式系统上基于流的多媒体应用程序的能耗。通过利用多核体系结构的潜力和流应用程序的特性,我们提出了一种两阶段方法来解决具有离散电压水平的多核处理器上与周期有关的任务的能量最小化问题。使用我们的方法,在第一阶段,我们提出了一种称为RDAG的粗粒度任务级软件流水线算法,该算法基于重定时技术将周期相关的任务转换为一组独立的任务(Leiserson和Saxe,Algorithmica 6:5- 1991年第35页)。在第二阶段,我们提出了两种DVS调度算法以实现能量最小化。对于单核处理器,我们提出了一种基于动态规划的伪多项式算法,可以实现最优解。对于多核处理器,我们提出了一种称为SpringS的新型调度算法,该算法像弹簧一样工作,并且可以通过迭代地调整任务调度和电压选择来有效降低能耗。我们根据AMD Mobile Athlon4 DVS处理器的功耗模型,使用E3S(Dick 2008)和TGFF的一组基准进行实验。实验结果表明,与Zhang等人的算法相比,我们的技术可以节省12.7%的能量。 (2002年)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号