首页> 外文期刊>Journal of signal processing systems for signal, image, and video technology >Concurrent Error Detection in Multiplexer-Based Multipliers for Normal Basis of GF(2~m) Using Double Parity Prediction Scheme
【24h】

Concurrent Error Detection in Multiplexer-Based Multipliers for Normal Basis of GF(2~m) Using Double Parity Prediction Scheme

机译:基于双奇偶校验方案的基于GF(2〜m)正态的基于多路复用器的乘法器中的并发错误检测

获取原文
获取原文并翻译 | 示例

摘要

Successful implementation of elliptic curve cryptographic systems primarily depends on the efficient and reliable arithmetic circuits for finite fields with very large orders. Thus, the robust encryption/decryption algorithms are elegantly needed. Multiplication would be the most important finite field arithmetic operation. It is much more complex compared to the finite field addition. It is also frequently used in performing point operations in elliptic curve groups. The hardware implementation of a multiplication operation may require millions of logic gates and may thus lead to erroneous outputs. To obtain reliable cryptographic applications, a novel concurrent error detection (CED) architecture to detect erroneous outputs in multiplexer-based normal basis (NB) multiplier over GF (2~m) using the parity prediction scheme is proposed in this article. Although various NB multipliers, dependingrnon αα~(2~i) = Σ_(j=0)~(m-1) t_(i,j~(α~2~i)), have different time and space com-plexities, NB multipliers will have the same structure ifrnthey use a parity prediction function. By using the structure of the proposed CED NB multiplier, a CED scalable multiplier over composite fields with 100% error detection rate is also presented.
机译:椭圆曲线密码系统的成功实现主要取决于用于具有很大阶数的有限域的有效和可靠的算术电路。因此,非常需要鲁棒的加密/解密算法。乘法将是最重要的有限域算术运算。与有限域加法相比,它要复杂得多。它也经常用于在椭圆曲线组中执行点操作。乘法运算的硬件实现可能需要数百万个逻辑门,因此可能导致错误的输出。为了获得可靠的密码应用,本文提出了一种新颖的并发错误检测(CED)体系结构,该体系结构使用奇偶性预测方案在GF(2〜m)上的基于多路复用器的标准乘数(NB)乘数中检测错误输出。尽管各种NB乘数取决于αα〜(2〜i)=Σ_(j = 0)〜(m-1)t_(i,j〜(α〜2〜i)),但它们的时空复杂度不同, NB乘法器如果使用奇偶校验预测函数,将具有相同的结构。通过使用所提出的CED NB乘法器的结构,还提出了复合字段上具有100%错误检测率的CED可扩展乘法器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号