首页> 外文期刊>Journal of VLSI signal processing systems >Novelty Detection with Multivariate Extreme Value Statistics
【24h】

Novelty Detection with Multivariate Extreme Value Statistics

机译:具有多元极值统计的新颖性检测

获取原文
获取原文并翻译 | 示例

摘要

Novelty detection, or one-class classification, aims to determine if data are "normal" with respect to some model of normality constructed using examples of normal system behaviour. If that model is composed of generative probability distributions, the extent of "normality" in the data space can be described using Extreme Value Theory (EVT), a branch of statistics concerned with describing the tails of distributions. This paper demonstrates that existing approaches to the use of EVT for novelty detection are appropriate only for univariate, unimodal problems. We generalise the use of EVT for novelty detection to the analysis of data with multivariate, multimodal distributions, allowing a principled approach to the analysis of high-dimensional data to be taken. Examples are provided using vital-sign data obtained from a large clinical study of patients in a high-dependency hospital ward.
机译:新颖性检测或一类分类旨在确定数据是否相对于使用正常系统行为示例构建的某些正常性模型为“正常”。如果该模型由生成概率分布组成,则可以使用极值理论(EVT)来描述数据空间中“正态”的程度,EVT是统计的一个分支,与描述分布的尾巴有关。本文证明,使用EVT进行新颖性检测的现有方法仅适用于单变量,单峰问题。我们将使用EVT进行新颖性检测推广到具有多变量,多峰分布的数据分析中,从而允许采用有原则的方法来分析高维数据。使用从高依赖性医院病房中的患者的大量临床研究获得的生命体征数据提供了示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号