首页> 外文期刊>Journal of VLSI signal processing systems >Sound Source DOA Estimation and Localization in Noisy Reverberant Environments Using Least-Squares Support Vector Machines
【24h】

Sound Source DOA Estimation and Localization in Noisy Reverberant Environments Using Least-Squares Support Vector Machines

机译:使用最小二乘支持向量机的噪声混响环境中声源DOA估计和定位

获取原文
获取原文并翻译 | 示例

摘要

This paper presents two new algorithms for mapping the time-differences-of-arrival (TDOAs) measured from the microphone pairs to sound source direction-of-arrival (DOA) and location in room environments based on the least-squares support vector machine (LS-SVM). Least squares (LS) has been widely used in the TDOA based algorithms for sound source DOA estimation or localization to map the measured TDOAs into sound source DOA or location. The drawback of LS mapping is that its performance degrades significantly in some scenarios. To combat this problem, an LS-SVM regression based algorithm for the nonlinear mapping is proposed, which outperforms the LS based algorithm in noisy reverberant rooms. Conventional approaches to sound source localization usually assume that the microphones used are ideal and that the locations of the microphones are also known a priori, which may not be well satisfied in practice. Therefore, the microphone arrays need to be calibrated carefully before use. However, it is not an easy task to calibrate microphone arrays perfectly. In this paper, we also proposed an algorithm for sound source localization based on the LS-SVM, which has the advantage that microphone array calibration is notrequired. The performance of the proposed algorithms is validated by the simulation results in noisy reverberant environments.
机译:本文提出了两种基于最小二乘支持向量机的新算法,用于将麦克风对中测得的到达时间差(TDOA)映射到房间环境中的声源到达方向(DOA)和位置。 LS-SVM)。最小二乘(LS)已广泛用于基于TDOA的算法中,用于声源DOA估计或定位,以将测量的TDOA映射到声源DOA或位置。 LS映射的缺点是在某些情况下其性能会大大降低。为了解决这个问题,提出了一种基于LS-SVM回归的非线性映射算法,该算法在嘈杂的混响室内优于基于LS的算法。常规的声源定位方法通常假定使用的麦克风是理想的,并且麦克风的位置也是先验的,这在实践中可能无法很好地满足。因此,麦克风阵列在使用前需要仔细校准。但是,要完美地校准麦克风阵列并非易事。在本文中,我们还提出了一种基于LS-SVM的声源定位算法,其优点是不需要对麦克风阵列进行校准。在嘈杂的混响环境中,仿真结果验证了所提算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号