首页> 外文期刊>Journal of VLSI signal processing systems for signal, image, and video technology >Discriminative Boosting Algorithm for Diversified Front-End Phonotactic Language Recognition
【24h】

Discriminative Boosting Algorithm for Diversified Front-End Phonotactic Language Recognition

机译:区分前端语音策略语言的鉴别提升算法

获取原文
获取原文并翻译 | 示例

摘要

Currently, phonotactic spoken language recognition (SLR) and acoustic SLR systems are widely used language recognition systems. Parallel phone recognition followed by vector space modeling (PPRVSM) is one typical phonotactic system for spoken language recognition. To achieve better performance, researchers assumed to extract more complementary information of the training data using phone recognizers trained for multiple language-specific phone recognizers, different acoustic models and acoustic features. These methods achieve good performance but usually compute at high computational cost and only using complementary information of the training data. In this paper, we explore a novel approach to discriminative vector space model (VSM) training by using a boosting framework to use the discriminative information of test data effectively, in which an ensemble of VSMs is trained sequentially. The effectiveness of our boosting variation comes from the emphasis on working with the high confidence test data to achieve discriminatively trained models. Our variant of boosting also includes utilizing original training data in VSM training. The discriminative boosting algorithm (DBA) is applied to the National Institute of Standards and Technology (NIST) language recognition evaluation (LRE) 2009 task and show performance improvements. The experimental results demonstrate that the proposed DBA shows 1.8 %, 11.72 % and 15.35 % relative reduction for 30s, 10s and 3s test utterances in equal error rate (EER) than baseline system.
机译:当前,音律口语识别(SLR)和声学SLR系统是广泛使用的语言识别系统。并行电话识别和矢量空间建模(PPRVSM)是一种典型的语音识别语音系统。为了获得更好的性能,研究人员假设使用针对多种语言特定的电话识别器,不同的声学模型和声学特征而经过培训的电话识别器来提取训练数据的更多补充信息。这些方法具有良好的性能,但是通常仅使用训练数据的补充信息就需要很高的计算成本。在本文中,我们通过使用提升框架有效地利用测试数据的判别信息,探索了一种新的判别向量空间模型(VSM)训练的方法,其中VSM的集合被顺序训练。我们不断变化的结果的有效性来自于对高置信度测试数据的重视,以实现具有区别性的训练模型。我们的提升方法还包括在VSM培训中利用原始培训数据。判别增强算法(DBA)已应用于美国国家标准技术研究院(NIST)语言识别评估(LRE)2009任务,并显示出性能上的提高。实验结果表明,与基准系统相比,建议的DBA在30s,10s和3s测试发声中的相对误码率(EER)分别降低了1.8%,11.72%和15.35%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号