首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >A Target-Oriented Phonotactic Front-End for Spoken Language Recognition
【24h】

A Target-Oriented Phonotactic Front-End for Spoken Language Recognition

机译:面向目标的语音识别语言前端

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a strategy to optimize the phonotactic front-end for spoken language recognition. This is achieved by selecting a subset of phones from an existing phone recognizer's phone inventory such that only the phones that best discriminate each of the target languages are selected. Each such phone subset will be used to construct a target-oriented phone tokenizer (TOPT). In this study, we examine different approaches to construct such phone tokenizers for the front-end of a Parallel Phone Recognizers followed by Vector Space Modeling (PPR-VSM) system. We show that the target-oriented phone tokenizers derived from language-specific phone recognizers are more effective than the original parallel phone recognizers. Our experimental results also show that the target-oriented phone tokenizers derived from universal phone recognizers achieve better performance than those derived from language-specific phone recognizers. Using the proposed target-oriented phone tokenizers as the phonotactic front-end, the language recognition system performance is significantly improved without the need for additional training samples. We achieve an equal error rate (EER) of 1.27%, 1.42% and 2.73% on the NIST 1996, 2003 and 2007 LRE databases respectively for 30-s closed-set tests. This system is one of the subsystems in IIR's submission to NIST 2007 LRE.
机译:本文提出了一种策略,用于优化口语识别的音韵学前端。这是通过从现有电话识别器的电话清单中选择电话的子集来实现的,从而仅选择能最好地区分每种目标语言的电话。每个此类电话子集将用于构造面向目标的电话令牌生成器(TOPT)。在这项研究中,我们研究了为并行电话识别器的前端以及随后的向量空间建模(PPR-VSM)系统构造这种电话标记器的不同方法。我们表明,从特定语言的电话识别器派生的面向目标的电话标记器比原始的并行电话识别器更有效。我们的实验结果还表明,从通用电话识别器派生的面向目标的电话标记器的性能要优于从特定语言的电话识别器派生的目标。使用拟议的面向目标的电话令牌生成器作为语音定向前端,可以显着提高语言识别系统的性能,而无需其他训练样本。在30 s封闭测试中,我们在NIST 1996、2003和2007 LRE数据库上分别实现了1.27%,1.42%和2.73%的均等错误率(EER)。该系统是IIR向NIST 2007 LRE提交的子系统之一。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号