首页> 外文期刊>Journal of signal processing systems for signal, image, and video technology >A Privacy Protection Evaluation Mechanism for Dynamic Data Based on Chunk-Confusion
【24h】

A Privacy Protection Evaluation Mechanism for Dynamic Data Based on Chunk-Confusion

机译:基于块混淆的动态数据隐私保护评估机制

获取原文
获取原文并翻译 | 示例

摘要

Nowadays big data security plays a major issue in cloud computing. Chunk-confusion-based privacy protection mechanism (CCPPM) protects the privacy of the tenants in plaintext. But both multi-tenant applications' data and tenants' privacy requirements are dynamically changing, which will have a great effect on the underlying storage model of cloud data. Moreover, the tenants' business processing will change the data distribution and destroy the distribution balance of privacy data, which makes the data stored in the cloud face the risk of leakage of privacy. Therefore, the paper proposed a privacy protection evaluation mechanism for dynamic data based on CCPPM. The paper firstly introduces three kinds of the privacy leakages due to unbalanced data under the CCPPM, and analyzes two methods used for attacking. Aiming at the privacy leakages and the attack methods, we proposed a dynamic data processing algorithm to record the tenants' operation sequence and set up the corresponding evaluation formula. Next, we evaluated the effect of privacy protection from two aspects of simple attack and background-knowledge-based attack, and used the data distribution similarity privacy preserving dynamic evaluation algorithm presented in this paper to obtain the measurement results of privacy leakages. Finally, according to the evaluation results, the defense strategies are given to prevent data privacy leakages. The experimental evaluation proves that rationality of dynamic the evaluation mechanism proposed in this paper has better feasibility and practicality for big data privacy protection.
机译:如今,大数据安全在云计算中扮演着重要的角色。基于块混淆的隐私保护机制(CCPPM)以明文形式保护租户的隐私。但是,多租户应用程序的数据和租户的隐私要求都在动态变化,这将对云数据的基础存储模型产生巨大影响。此外,租户的业务处理将改变数据分布,破坏隐私数据的分布平衡,这使得存储在云中的数据面临隐私泄露的风险。因此,本文提出了一种基于CCPPM的动态数据隐私保护评估机制。本文首先介绍了CCPPM下由于数据不平衡导致的三种隐私泄露,并分析了两种攻击方法。针对隐私泄露和攻击方法,提出了一种动态数据处理算法来记录租户的操作顺序,并建立相应的评价公式。接下来,我们从简单攻击和基于背景知识的攻击两个方面评估了隐私保护的效果,并使用本文提出的数据分布相似性隐私保护动态评估算法获得了隐私泄漏的测量结果。最后,根据评估结果,给出了防御策略,以防止数据隐私泄露。实验评估表明,本文提出的动态评估机制的合理性对于大数据隐私保护具有较好的可行性和实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号