首页> 外文期刊>Journal of signal processing systems for signal, image, and video technology >An Exploration Framework for Efficient High-Level Synthesis of Support Vector Machines: Case Study on ECG Arrhythmia Detection for Xilinx Zynq SoC
【24h】

An Exploration Framework for Efficient High-Level Synthesis of Support Vector Machines: Case Study on ECG Arrhythmia Detection for Xilinx Zynq SoC

机译:支持向量机的高效高级综合探索框架:Xilinx Zynq SoC ECG心律失常检测的案例研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In recent years, Support Vector Machine (SVM) classifiers have played a crucial role in providing data fusion and high accuracy classification solutions for various, complex, non-linear problems. Their popularity accompanied by the ever-increasing need of implementing it on computationally weak, portable or even wearable systems has refueled the effort to accelerate their execution. In this paper, we explore FPGA-based acceleration to produce efficient SVM hardware co-processors. We propose a systematic two-level approach for SVM acceleration, which first optimizes the global structure of the original SVM's behavioral description to exploit the data- and instruction-level parallelism and then further refines it through a targeted design exploration that matches the accelerator's memory architecture to its computation and memory access patterns. The proposed methodology has been implemented as a framework on top of Vivado High-Level Synthesis (HLS) tool. We evaluate the effectiveness of the methodology through a rich set of analysis and validation results, which show that its adoption delivers SVM accelerator designs achieving latency gains of up to 98.78 % in respect to Vivado-HLS default optimized solution. Finally, using as a case study an ECG analysis and Arrhythmia detection system we show that a target Zynq programmable SoC utilizing the optimized SVM accelerator design outperforms pure software implementations in numerous single or dual core target platforms, achieving speedups, which range from 10x up to 78x.
机译:近年来,支持向量机(SVM)分类器在为各种复杂的非线性问题提供数据融合和高精度分类解决方案方面发挥了关键作用。它们的流行伴随着对在计算能力弱,可移植甚至可穿戴的系统上实现它的不断增长的需求,这加重了加速它们执行的努力。在本文中,我们探索了基于FPGA的加速以产生高效的SVM硬件协处理器。我们提出了一种用于SVM加速的系统性两级方法,该方法首先优化原始SVM行为描述的全局结构,以利用数据和指令级并行性,然后通过与加速器的内存架构相匹配的针对性设计探索进一步对其进行优化其计算和内存访问模式。拟议的方法已作为Vivado高级综合(HLS)工具之上的框架实施。我们通过一系列丰富的分析和验证结果评估了该方法的有效性,这表明该方法的采用提供了SVM加速器设计,相对于Vivado-HLS默认优化解决方案,其延迟提高了98.78%。最后,以ECG分析和心律不齐检测系​​统为例,我们证明了利用优化的SVM加速器设计的目标Zynq可编程SoC胜过许多单核或双核目标平台上的纯软件实现,实现了从10倍到高达10倍的加速。 78倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号