首页> 外文期刊>Journal of signal processing systems for signal, image, and video technology >Efficient Design of Pruned Convolutional Neural Networks on FPGA
【24h】

Efficient Design of Pruned Convolutional Neural Networks on FPGA

机译:FPGA修剪卷积神经网络的高效设计

获取原文
获取原文并翻译 | 示例

摘要

Convolutional Neural Networks (CNNs) have improved several computer vision applications, like object detection and classification, when compared to other machine learning algorithms. Running these models in edge computing devices close to data sources is attracting the attention of the community since it avoids high-latency data communication of private data for cloud processing and permits real-time decisions turning these systems into smart embedded devices. Running these models is computationally very demanding and requires a large amount of memory, which are scarce in edge devices compared to a cloud center. In this paper, we proposed an architecture for the inference of pruned convolutional neural networks in any density FPGAs. A configurable block pruning method is proposed together with an architecture that supports the efficient execution of pruned networks. Also, pruning and batching are studied together to determine how they influence each other. With the proposed architecture, we run the inference of a CNN with an average performance of 322 GOPs for 8-bit data in a XC7Z020 FPGA. The proposed architecture running AlexNet processes 240 images/s in a ZYNQ7020 and 775 images/s in a ZYNQ7045 with only 1.2% accuracy degradation.
机译:与其他机器学习算法相比,卷积神经网络(CNNS)具有改进的多个计算机视觉应用,如对象检测和分类。在接近数据源的边缘计算设备中运行这些模型正在引起社区的注意,因为它避免了云处理的私有数据的高延迟数据通信,并允许将这些系统转换为智能嵌入式设备的实时决策。运行这些模型是非常苛刻的,并且需要大量的内存,而与云中心相比,边缘设备稀缺。在本文中,我们提出了一种在任何密度FPGA中推动修剪卷积神经网络的架构。一种可配置的块修剪方法,以及支持提示网络的有效执行的架构。此外,研究了修剪和批次,以确定它们如何互相影响。利用所提出的架构,我们在XC7Z020 FPGA中为8位数据进行CNN的推断,平均性能为322个GOP。在ZynQ7020中运行AlexNet的建议在ZynQ7020和775图像中运行240图像,仅具有1.2%的精度下降。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号