首页> 外文期刊>Journal of Scientific Computing >A Radial Basis Function (RBF)-Finite Difference (FD) Method for Diffusion and Reaction-Diffusion Equations on Surfaces
【24h】

A Radial Basis Function (RBF)-Finite Difference (FD) Method for Diffusion and Reaction-Diffusion Equations on Surfaces

机译:径向基函数(RBF)-有限差分(FD)方法求解表面扩散和反应扩散方程

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a method based on radial basis function (RBF)-generated finite differences (FD) for numerically solving diffusion and reaction-diffusion equations (PDEs) on closed surfaces embedded in . Our method uses a method-of-lines formulation, in which surface derivatives that appear in the PDEs are approximated locally using RBF interpolation. The method requires only scattered nodes representing the surface and normal vectors at those scattered nodes. All computations use only extrinsic coordinates, thereby avoiding coordinate distortions and singularities. We also present an optimization procedure that allows for the stabilization of the discrete differential operators generated by our RBF-FD method by selecting shape parameters for each stencil that correspond to a global target condition number. We show the convergence of our method on two surfaces for different stencil sizes, and present applications to nonlinear PDEs simulated both on implicit/parametric surfaces and more general surfaces represented by point clouds.
机译:在本文中,我们提出了一种基于径向基函数(RBF)生成的有限差分(FD)的方法,用于数值求解埋入的封闭表面上的扩散和反应扩散方程(PDE)。我们的方法使用线法公式化,其中使用RBF插值对PDE中出现的表面导数进行局部近似。该方法仅需要代表表面的分散节点和那些分散节点处的法线矢量。所有计算仅使用外部坐标,从而避免坐标变形和奇异性。我们还提出了一种优化程序,可以通过为每个模板选择与全局目标条件编号相对应的形状参数,来稳定由我们的RBF-FD方法生成的离散差分算子。我们展示了针对不同模具尺寸的两个表面上我们的方法的收敛性,并提出了在隐式/参数化表面以及由点云表示的更通用的表面上模拟的非线性PDE的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号