首页> 外文期刊>Journal of robotics >Keyframes Global Map Establishing Method for Robot Localization through Content-Based Image Matching
【24h】

Keyframes Global Map Establishing Method for Robot Localization through Content-Based Image Matching

机译:通过基于内容的图像匹配进行机器人定位的关键帧全局地图建立方法

获取原文
获取原文并翻译 | 示例

摘要

Self-localization and mapping are important for indoor mobile robot. We report a robust algorithm for map building and subsequent localization especially suited for indoor floor-cleaning robots. Common methods, for example, SLAM, can easily be kidnapped by colliding or disturbed by similar objects. Therefore, keyframes global map establishing method for robot localization in multiple rooms and corridors is needed. Content-based image matching is the core of this method. It is designed for the situation, by establishing keyframes containing both floor and distorted wall images. Image distortion, caused by robot view angle and movement, is analyzed and deduced. And an image matching solution is presented, consisting of extraction of overlap regions of keyframes extraction and overlap region rebuild through subblocks matching. For improving accuracy, ceiling points detecting and mismatching subblocks checking methods are incorporated. This matching method can process environment video effectively. In experiments, less than 5% frames are extracted as keyframes to build global map, which have large space distance and overlap each other. Through this method, robot can localize itself by matching its real-time vision frames with our keyframes map. Even with many similar objects/background in the environment or kidnapping robot, robot localization is achieved with position RMSE<0.5m.
机译:自我定位和映射对于室内移动机器人非常重要。我们报告了一种健壮的算法,可用于地图构建和后续定位,尤其适用于室内地板清洁机器人。常见的方法(例如SLAM)很容易被相似物体碰撞或干扰而被绑架。因此,需要一种用于在多个房间和走廊中进行机器人定位的关键帧全局地图建立方法。基于内容的图像匹配是此方法的核心。通过建立包含地板图像和扭曲的墙壁图像的关键帧来针对这种情况进行设计。分析和推导了由机器人视角和运动引起的图像失真。提出了一种图像匹配解决方案,包括关键帧提取的重叠区域提取和子块匹配重建重叠区域。为了提高准确性,结合了上限点检测和失配子块检查方法。这种匹配方法可以有效地处理环境视频。在实验中,提取少于5%的帧作为关键帧以构建全局地图,这些地图具有较大的空间距离并且彼此重叠。通过这种方法,机器人可以通过将其实时视觉框架与我们的关键帧图进行匹配来定位自己。即使环境中有许多相似的物体/背景或绑架机器人,也可以通过RMSE <0.5m的位置实现机器人定位。

著录项

  • 来源
    《Journal of robotics》 |2017年第2017期|1646095.1-1646095.16|共16页
  • 作者单位

    State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China ,The University of Chinese Academy of Sciences, Beijing 100190, China;

    State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China;

    State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China;

    State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China;

    State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号