首页> 外文期刊>Journal of Real-Time Image Processing >An automated detection model of threat objects for X-ray baggage inspection based on depthwise separable convolution
【24h】

An automated detection model of threat objects for X-ray baggage inspection based on depthwise separable convolution

机译:基于深井可分离卷积的X射线行李检查的自动检测模型

获取原文
获取原文并翻译 | 示例

摘要

X-ray baggage inspection is an essential task to detect threat objects at important controlled access places, which can guard personal safety and prevent crime. Generally, it is carried out by screeners to visually determine whether or not a bag contains threat objects. Whereas, manual detection exhibits distinct shortcomings, from high detection errors to different detection results produced by screeners. These limitations can be addressed by introducing automated detection model of threat objects for X-ray baggage inspection. However, existing automated detection methods cannot realize end-to-end detection and the detection results include only classification without location. In this paper, we propose an automated detection model of threat objects based on depthwise separable convolution. Our model is able to not only categorize the threat object but also locate it simultaneously. The network model has the advantage of high detection accuracy, fast computational speed, and a few parameters. Meanwhile, the precision of threat object regions is enhanced with the help of multi-scale prediction. A deformation layer is added in our model, which can provide invariance to affine warping. The experiments on the GDXray database (Mery et al. in J Nondestr Eval 34(4):42, 2015) demonstrate that the overall performance of our proposed model is superior to YOLOv3 (Redmon J and Farhadi A in YOLOv3: an incremental improvement, 2018) model, SSD (Liu et al. in SSD: single shot multibox detector. In: European Conference on Computer Vision (ECCV), pp. 21-37, 2016) model, and Tiny_YOLO (Redmon et al. in You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779-788, 2015) model.
机译:X射线行李检验是检测重要控制访问场所的威胁对象的必要任务,可以防止人身安全和预防犯罪。通常,它是通过筛选器进行的,以便在视觉上确定袋子是否包含威胁对象。然而,手动检测表现出明显的缺点,从高检测误差到筛选器产生的不同检测结果。通过引入X射线行李检查的威胁对象的自动检测模型,可以解决这些限制。然而,现有的自动检测方法不能实现端到端检测,并且检测结果仅包括没有位置的分类。在本文中,我们提出了一种基于深度可分离卷积的威胁对象的自动检测模型。我们的模型不仅能够对威胁对象进行分类,还可以同时定位它。网络模型具有高检测精度,快速计算速度和几个参数的优点。同时,在多尺度预测的帮助下,威胁对象区域的精度得到了增强。在我们的模型中添加了变形层,其可以提供仿射翘曲的不变性。 GDXRAY数据库的实验(Mery等人。在J Nondest Eval 34(4):42,2015中)表明,我们提出的模型的整体表现优于Yolov3(yolov3中的Redmon J和Farhadi A:增量改进, 2018年)模型,SSD(Liu等人。在SSD中:单次拍摄多杆探测器。在:欧洲电脑视觉(ECCV),第21-37,2016)模型,Tiny_yolo(Redmon等人。在你只看一旦:统一,实时对象检测。在:2016 IEEE计算机视觉和模式识别(CVPR),PP。779-788,2015)模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号