首页> 外文期刊>Journal of Real-Time Image Processing >Position-aware lightweight object detectors with depthwise separable convolutions
【24h】

Position-aware lightweight object detectors with depthwise separable convolutions

机译:具有深度可分离卷曲的位置感知轻质对象探测器

获取原文
获取原文并翻译 | 示例

摘要

Recently, significant improvements have been achieved for object detection algorithm by increasing the size of convolutional neural network (CNN) models, but the resulting increase of computational complexity poses an obstacle to practical applications. And some of the lightweight methods fail to consider the characteristics of object detection into and suffer a huge loss of accuracy. In this paper, we design a multi-scale feature lightweight network structure and specific convolution module for object detection based on depthwise separable convolution, which not only reduces the computational complexity but also improves the accuracy by using the specific position information in object detection. Furthermore, in order to improve the detection accuracy for small objects, we construct a multi-channel position-aware map and propose training based on knowledge distillation for object detection to train the lightweight model effectively. Last, we propose a training strategy based on a key-layer guiding structure to balance performance with training time. The experimental results show that on the COCO dataset that takes the state-of-the-art object detection algorithm, YOLOv3, as the baseline, our model size is compressed to 1/11 while accuracy drops by 7.4 mmAP, and the computational latency on the GPU and ARM platforms are reduced to 43.7% and 0.29%, respectively. Compared with the state-of-the-art lightweight object detection model, MNet V2 + SSDLite, the accuracy of our model increases by 3.5 mmAP while the inferencing time stays nearly the same. On the PASCAL VOC2007 dataset, the accuracy of our model increases by 5.2 mAP compared to the state-of-the-art lightweight algorithm based on knowledge distillation. Therefore, in terms of accuracy, parameter count, and real-time performance, our algorithm has better performance than lightweight algorithms based on knowledge distillation or depthwise separable convolution.
机译:最近,通过增加卷积神经网络(CNN)模型的大小来实现对象检测算法的显着改进,但是由此产生的计算复杂性的增加对实际应用构成了障碍。其中一些轻量级方法未能考虑物体检测的特征,并遭受巨大的准确性。在本文中,我们设计了一种基于深度可分离卷积的对象检测的多尺度特征轻量级网络结构和特定卷积模块,这不仅可以降低计算复杂性,而且还通过使用物体检测中的特定位置信息来提高精度。此外,为了提高小物体的检测精度,我们构建了一个多通道位置感知地图,并基于知识蒸馏来培训进行对象检测,有效地训练轻量级模型。最后,我们提出了一种基于关键层导向结构的培训策略,以通过培训时间平衡性能。实验结果表明,在具有最先进的对象检测算法的Coco数据集上,YOLOV3作为基线,我们的模型大小被压缩为1/11,而精度下降7.4 mmap,并且计算延迟GPU和ARM平台分别降至43.7%和0.29%。与最先进的轻量级对象检测模型相比,Mnet V2 + SSDlite,我们模型的准确性增加3.5 mmap,而推理时间保持几乎相同。在Pascal VOC2007数据集上,与基于知识蒸馏的最先进的轻量级算法相比,我们模型的准确性增加了5.2地图。因此,在准确性,参数计数和实时性能方面,我们的算法基于知识蒸馏或深度可分离卷积的轻量级算法具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号