首页> 外文期刊>Journal of visual communication & image representation >Real-time video super-resolution using lightweight depthwise separable group convolutions with channel shuffling
【24h】

Real-time video super-resolution using lightweight depthwise separable group convolutions with channel shuffling

机译:实时视频超分辨率使用轻量级深度可分离组卷积与通道混洗

获取原文
获取原文并翻译 | 示例

摘要

In recent years, convolutional neural networks (CNNs) have accelerated the developments of video super resolution (SR) for achieving higher image quality. However, the computational cost of existing CNN-based video super-resolution is too heavy for real-time applications. In this paper, we propose a new video super-resolution framework using lightweight frame alignment module and well-designed up-sampling module for real-time processing. Specifically, our framework, which is called as Lightweight Shuffle Video Super-Resolution Network (LSVSR), combines channel shuffling, depthwise convolution and pointwise group convolution to significantly reduce the computational burden during frame alignment and high-resolution frame reconstruction. On the public benchmark datasets, our proposed network outperforms the state-of-the-art lightweight video SR networks in terms of objective (PSNR and SSIM) and subjective evaluations, number of network parameters and floating-point operations. Our network can achieve real-time 540P to 2160P 4? super-resolution for more than 60fps using desktop GPUs or mobile phones with neural processing unit.
机译:近年来,卷积神经网络(CNNS)加速了视频超分辨率(SR)的发展,以实现更高的图像质量。然而,对于实时应用,现有的基于CNN的视频超分辨率的计算成本太重了。在本文中,我们提出了一种使用轻型框架对准模块和良好设计的上采样模块的新视频超分辨率框架,用于实时处理。具体而言,我们的框架被称为轻量级洗牌视频超分辨率网络(LSVSR),相结合了频道混洗,深度卷积和点组卷积,以显着降低帧对准和高分辨率帧重建期间的计算负担。在公共基准数据集上,我们所提出的网络在客观(PSNR和SSIM)和主观评估中,网络参数和浮点操作的数量优于最先进的轻量级视频SR网络。我们的网络可以实时540P到2160P 4?使用桌面GPU或带有神经处理单元的移动电话的超级分辨率超过60fps。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号