首页> 外文OA文献 >Lightweight image classifier using dilated and depthwise separable convolutions
【2h】

Lightweight image classifier using dilated and depthwise separable convolutions

机译:轻量级图像分类器使用扩张和深度可分离卷积

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract The image classification based on cloud computing suffers from difficult deployment as the network depth and data volume increase. Due to the depth of the model and the convolution process of each layer will produce a great amount of calculation, the GPU and storage performance of the device are extremely demanding, and the GPU and storage devices equipped on the embedded and mobile terminals cannot support large models. So it is necessary to compress the model so that the model can be deployed on these devices. Meanwhile, traditional compression based methods often miss many global features during the compression process, resulting in low classification accuracy. To solve the problem, this paper proposes a lightweight neural network model based on dilated convolution and depthwise separable convolution with twenty-nine layers for image classification. The proposed model employs the dilated convolution to expand the receptive field during the convolution process while maintaining the number of convolution parameters, which can extract more high-level global semantic features to improve the classification accuracy. Also, the depthwise separable convolution is applied to reduce the network parameters and computational complexity in convolution operations, which reduces the size of the network. The proposed model introduces three hyperparameters: width multiplier, image resolution, and dilated rate, to compress the network on the premise of ensuring accuracy. The experimental results show that compared with GoogleNet, the network proposed in this paper improves the classification accuracy by nearly 1%, and the number of parameters is reduced by 3.7 million.
机译:摘要基于云计算的图像分类遭受困难的部署,因为网络深度和数据量增加。由于模型的深度和每个层的卷积过程将产生大量的计算,因此设备的GPU和存储性能非常苛刻,并且在嵌入式和移动终端上的GPU和存储设备无法支持大楷模。因此,有必要压缩模型,以便可以部署在这些设备上。同时,传统的基于压缩的方法经常在压缩过程中错过许多全局特征,导致分类精度低。为了解决问题,本文提出了一种基于扩张卷积的轻质神经网络模型,具有二十九层进行图像分类的深度可分离卷积。所提出的模型采用扩张的卷积,以在卷积过程中扩展接收场,同时保持卷积参数的数量,这可以提取更高级别的全局语义特征来提高分类精度。此外,应用深度可分离的卷积以降低卷积操作中的网络参数和计算复杂性,这减少了网络的大小。所提出的模型引入了三个超参数:宽度乘法器,图像分辨率和扩张速率,以压缩网络的前提确保精度。实验结果表明,与Googlenet相比,本文提出的网络提出了近1%的分类精度,参数数量减少了370万。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号