首页> 外文期刊>Journal of Real-Time Image Processing >A labeling algorithm based on a forest of decision trees
【24h】

A labeling algorithm based on a forest of decision trees

机译:一种基于决策树森林的标记算法

获取原文
获取原文并翻译 | 示例

摘要

Connected component labeling (CCL) is one of the most fundamental operations in image processing. CCL is a procedure for assigning a unique label to each connected component. It is a mandatory step between low-level and high-level image processing. In this work, a general method is given to improve the neighbourhood exploration in a two-scan labeling. The neighbourhood values are considered as commands of a decision table. This decision table can be represented as a decision tree. A block-based approach is proposed so that values of several pixels are given by one decision tree. This block-based approach can be extended to multiple connectivities, 2D and 3D. In a raster scan, already seen pixels can be exploited to generate smaller decision trees. New decision trees are automatically generated from every possible command. This process creates a decision forest that minimises the number of memory accesses. Experimental results show that this method is faster than the state-of-the-art labelling algorithms and require fewer memory accesses. The whole process can be generalised to any given connectivity.
机译:连接的组件标记(CCL)是图像处理中最基本的操作之一。 CCL是为每个连接组件分配唯一标签的过程。它是低级和高级图像处理之间的强制性步骤。在这项工作中,给出了一般方法来改善双扫描标记中的邻域探索。邻域值被视为决策表的命令。该决策表可以表示为决策树。提出基于块的方法,使得几个像素的值由一个决策树给出。基于块的方法可以扩展到多个连接性,2D和3D。在光栅扫描中,已经看到的像素可以被利用以产生较小的决策树。新的决策树从每种可能的命令都自动生成。此过程创建一个决策林,可最大限度地减少内存访问数量。实验结果表明,该方法比最先进的标签算法快,并且需要更少的内存访问。整个过程可以推广到任何给定的连接。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号