首页> 外文期刊>Journal of Real-Time Image Processing >Realization of CUDA-based real-time multi-camera visual SLAM in embedded systems
【24h】

Realization of CUDA-based real-time multi-camera visual SLAM in embedded systems

机译:嵌入式系统中基于CUDA的实时多相机视觉SLAM实现

获取原文
获取原文并翻译 | 示例

摘要

Abstract The real-time capability of multi-camera visual simultaneous localization and mapping (SLAM) in embedded systems is vital for robotic autonomous navigation. However, owing to the incredibly time-consuming feature extraction, multi-camera visual SLAM has high computational complexity and is difficult to run in real-time in embedded systems. This study proposes a central processing unit and graphics processing unit (CPU–GPU) combination acceleration strategy for multi-camera visual SLAM to solve the computational complexity problem, improve computational efficiency, and realize real-time running in embedded systems. First, the GPU-based feature extraction acceleration algorithm is introduced for multi-camera visual SLAM to accelerate the time-consuming feature extraction by using compute unified device architecture to parallelize feature extraction algorithm. Then, a CPU-based multi-threading pipelining method that conducts image reading, feature extraction, and tracking concurrently is proposed to improve the computational efficiency of multi-camera visual SLAM by solving the load imbalance problem caused by GPU use and improving the use of computing resources. Extensive experiment results demonstrate that the improved multi-camera visual SLAM has a speed of 15 frames per second in embedded systems and meets the real-time requirement. Moreover, the improved multi-camera visual SLAM is three times faster than the original CPU-based method. Our open-source code can be found online: https://github.com/CASHIPS-ComputerVision.
机译:摘要嵌入式系统中多摄像机视觉同步定位和映射(SLAM)的实时能力对于机器人自主导航至关重要。然而,由于令人难以置信的耗时的特征提取,多相机视觉SLAM具有高的计算复杂性,并且难以在嵌入式系统中实时运行。本研究提出了一种用于多相机视觉SLAM的中央处理单元和图形处理单元(CPU-GPU)组合加速策略,以解决计算复杂性问题,提高计算效率,并实现嵌入式系统中的实时运行。首先,引入了基于GPU的特征提取加速算法,用于多摄像机Visual Slam,通过使用计算统一设备架构并行化特征提取算法来加速耗时的特征提取。然后,提出了一种基于CPU的多线程流水线化方法,其同时进行图像读取,特征提取和跟踪,以通过解决由GPU使用引起的负载不平衡问题和改善使用来提高多摄像机视觉流动的计算效率计算资源。广泛的实验结果表明,改进的多相机视觉SLAM在嵌入式系统中每秒15帧的速度,并满足实时要求。此外,改进的多摄像机Visual SLAM比原始CPU的方法快三倍。我们的开源代码可以在线找到:https://github.com/caships-computervision。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号