首页> 外文期刊>Journal of Real-Time Image Processing >Efficient next-best-scan planning for autonomous 3D surface reconstruction of unknown objects
【24h】

Efficient next-best-scan planning for autonomous 3D surface reconstruction of unknown objects

机译:高效的次佳扫描计划,用于未知对象的自主3D表面重建

获取原文
获取原文并翻译 | 示例

摘要

This work focuses on autonomous surface reconstruction of small-scale objects with a robot and a 3D sensor. The aim is a high-quality surface model allowing for robotic applications such as grasping and manipulation. Our approach comprises the generation of next-best-scan (NBS) candidates and selection criteria, error minimization between scan patches and termination criteria. NBS candidates are iteratively determined by a boundary detection and surface trend estimation of the acquired model. To account for both a fast and high-quality model acquisition, that candidate is selected as NBS, which maximizes a utility function that integrates an exploration and a mesh-quality component. The modeling and scan planning methods are evaluated on an industrial robot with a high-precision laser striper system. While performing the new laser scan, data are integrated on-the-fly into both, a triangle mesh and a probabilistic voxel space. The efficiency of the system in fast acquisition of high-quality 3D surface models is proven with different cultural heritage, household and industrial objects.
机译:这项工作着重于利用机器人和3D传感器对小规模物体进行自主曲面重建。目的是提供一种高质量的表面模型,以允许诸如抓握和操纵之类的机器人应用。我们的方法包括生成次最佳扫描(NBS)候选对象和选择标准,最小化扫描补丁和终止标准之间的错误。通过获取的模型的边界检测和表面趋势估计来迭代确定NBS候选对象。为了兼顾快速和高质量的模型获取,该候选对象被选为NBS,它最大化了将探索和网格质量组件集成在一起的效用函数。在具有高精度激光剥离系统的工业机器人上评估了建模和扫描计划方法。在执行新的激光扫描时,数据被即时集成到三角形网格和概率体素空间中。在不同的文化遗产,家庭和工业对象中,证明了该系统在快速获取高质量3D表面模型中的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号