首页> 外文期刊>Journal of Real-Time Image Processing >Efficient binary image steganalysis based on ensemble neural network of multi-module
【24h】

Efficient binary image steganalysis based on ensemble neural network of multi-module

机译:基于多模块集成神经网络的高效二值图像隐写分析

获取原文
获取原文并翻译 | 示例

摘要

There are few studies on binary image steganalysis based on convolutional neural network (CNN). In this paper, an efficient binary image steganalysis scheme based on CNN which integrates high-pass filters, truncated linear unit and subnetworks is proposed. In the process of binary image steganography, flipped pixels usually scatter on the boundaries of the content in the image. Therefore, the first convolutional layer is constructed with high-pass filters to capture the structure of embedded signals better. Truncated linear unit (TLU) is also adopted after the first convolutional layer for the same purpose. 4 truncated linear units with different truncated values are adopted to capture embedding signals of different intensities. We also adopt 4 subnets after the 4 truncated linear units to further boost the performance of the CNN network. The experimental results show that our proposed scheme is efficient and effective on binary steganalysis.
机译:基于卷积神经网络(CNN)的二值图像隐写分析研究很少。本文提出了一种基于CNN的高效二值图像隐写分析方案,该方案将高通滤波器,截短的线性单元和子网进行了集成。在二值图像隐写术的过程中,翻转的像素通常会散布在图像内容的边界上。因此,第一卷积层由高通滤波器构成,以更好地捕获嵌入信号的结构。出于相同目的,在第一卷积层之后也采用了截断线性单位(TLU)。采用4个截断值不同的截断线性单元来捕获不同强度的嵌入信号。在4个截断的线性单元之后,我们还采用了4个子网,以进一步提高CNN网络的性能。实验结果表明,本文提出的方案对二元隐写分析是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号