首页> 外文期刊>Journal of power sources >Electronic and mechanistic origins of the superionic conductivity of sulfide-based solid electrolytes
【24h】

Electronic and mechanistic origins of the superionic conductivity of sulfide-based solid electrolytes

机译:硫化物基固体电解质超离子电导率的电子和机械起源

获取原文
获取原文并翻译 | 示例
           

摘要

Limited understanding of the high ionic conductivity of solid electrolytes is one of the major hurdles preventing the development of all-solid-state batteries for future electric vehicles. This is particularly observed in recently discovered sulfide-based solid electrolytes such as Li10GeP2S12 and Li9.54Si1.74P1.44S11.7Cl0.3, which exhibit unprecedented ionic conductivity close to or even higher than that of their liquid electrolyte counterparts. Despite recently reported experiments and simulations on their topological structures and associated ionic conductivity, the mechanisms underlying the superionic transport rate observed for these solid electrolytes are still poorly understood. Herein, we report the first results of the effect of applied electric potential on the changes in the electronic structures associated with the addition of dopant materials to solid electrolytes. Atomic simulations confirm that both Si and Cl dopants promote the polarization of Si- and Cl-bearing ionic clusters of solid electrolytes. This renders the ionic clusters mechanically less stable and thus opens up the diffusion pathway for Li+ under the presence of an electric field, facilitating the fast transport of Li+. The present work offers some design criteria that can be used to develop high-rate performance solid electrolytes.
机译:对固体电解质的高离子电导率的有限了解是阻碍为未来的电动汽车开发全固态电池的主要障碍之一。在最近发现的基于硫化物的固体电解质(例如Li10GeP2S12和Li9.54Si1.74P1.44S11.7Cl0.3)中尤其可以观察到这一点,它们表现出前所未有的离子电导率,接近或什至高于其液态电解质。尽管最近报道了有关其拓扑结构和相关离子电导率的实验和模拟,但对于这些固体电解质所观察到的超离子传输速率的机理仍知之甚少。在本文中,我们报告了施加电势对与向固体电解质中添加掺杂剂材料相关的电子结构变化的影响的初步结果。原子模拟证实,Si和Cl掺杂物均可促进固体电解质中含Si和Cl的离子簇的极化。这使得离子簇的机械稳定性较差,因此在存在电场的情况下打开了Li +的扩散途径,从而促进了Li +的快速迁移。本工作提供了一些设计标准,可用于开发高速率性能的固体电解质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号