首页> 外文会议>International Battery Seminar and Exhibit >Effect of Grain Boundaries on Li Superionic Conductivity in the Solid Electrolyte LGPS: Understanding and Property Data from Atomistic Simulations
【24h】

Effect of Grain Boundaries on Li Superionic Conductivity in the Solid Electrolyte LGPS: Understanding and Property Data from Atomistic Simulations

机译:固体电解质LGPS中晶界对Li超离子电导率的影响:原子模拟的理解和性能数据

获取原文

摘要

The conductivity of lithium ions in the solid material Li[10]GeP[2]S[12] (LGPS) at room temperature is about one order of magnitude higher than in other known solid electrolytes and it does exceed even those of liquid organic electrolytes. Recent experiments suggest a retarding effect caused by grain boundaries, which is noticeable especially below room temperature. In order to understand and quantify this effect, we have performed large scale molecular dynamics (MD) simulations using a newly developed forcefield, which is exclusively based on ab initio data. The present simulations confirm the proposed anisotropic Li ionic conductivity: Li diffuses about twice as fast along channels formed by LiS tetrahedra as perpendicular to these channels. At room temperature grain boundaries cause a significant reduction of the Li diffusion and, hence, ionic conductivity, whereas above 500 K this effect disappears. All calculations have been performed using a single computational environment, MedeA , which includes tools for creating atomistic models, VASP for performing solid state quantum mechanical computations, automated forcefield optimization tools, LAMMPS for molecular dynamics simulations, and a suite of analysis tools for materials property calculations. The highly efficient exploration and optimization of structural, dynamic, and electrochemical properties of materials and interfaces in batteries are now possible on the atomic level thus turning the power of large-scale computing into a competitive advantage for materials engineering.
机译:锂离子在固体材料Li [10] GeP [2] S [12](LGPS)中的电导率在室温下比其他已知的固体电解质高约一个数量级,并且甚至超过了液体有机电解质的电导率。 。最近的实验表明,由晶界引起的阻滞作用尤其在室温以下尤其明显。为了理解和量化这种影响,我们使用了新开发的力场进行了大规模分子动力学(MD)模拟,该力场完全基于从头算数据。本模拟结果证实了拟议的各向异性Li离子电导率:Li沿着由LiS四面体形成的通道扩散的速度大约是垂直于这些通道扩散速度的两倍。在室温下,晶界会导致Li扩散的显着减少,从而降低离子电导率,而在500 K以上时,这种影响消失。所有计算都是使用单一计算环境MedeA进行的,其中包括用于创建原子模型的工具,用于执行固态量子力学计算的VASP,自动力场优化工具,用于分子动力学模拟的LAMMPS以及用于材料特性的一套分析工具计算。现在可以在原子级别上高效探索和优化电池中材料和界面的结构,动态和电化学特性,从而将大规模计算的能力转变为材料工程的竞争优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号