首页> 外文期刊>Journal of Parallel and Distributed Computing >A privacy-preserved full-text retrieval algorithm over encrypted data for cloud storage applications
【24h】

A privacy-preserved full-text retrieval algorithm over encrypted data for cloud storage applications

机译:一种用于云存储应用程序的加密数据上的保留隐私的全文检索算法

获取原文
获取原文并翻译 | 示例

摘要

As Cloud Computing becomes prevalent, more and more sensitive information has been outsourced into cloud. A straightforward methodology that can protect data privacy is to encrypt the data before outsourcing. Recently, many searchable encryption schemes have been proposed to allow users to execute keyword-based search over encrypted data. However, it is different for users to exactly find all the interested files from the huge amounts of data by relying solely on keyword-based search. In information retrieval domain, full-text retrieval is an efficient information retrieval technology that allows efficient searches over massive amount of web data. Unfortunately, when applied in the cloud paradigm, full-text retrieval over encrypted cloud data have not been well studied. The full-text retrieval service requires extracting all the words in the contents of documents. The huge scale of index words cannot be efficiently supported by the existing searchable encryption schemes. Moreover, to protect user's privacy, a privacy-preserved full-text retrieval index is required. These problems make efficient full-text retrieval over a large amount of encrypted cloud data a very challenging task. In this paper, we first establish a set of strict privacy requirements for full-text retrieval in cloud storage systems. To address the challenging problem, we design a Bloom filter based tree index. Our scheme fine-tunes the similarity between the query and encrypted documents by proposing the membership entropies of index words. Our scheme is provably secure through our security analysis. We demonstrate the effectiveness and efficiency of the proposed scheme through extensive experimental evaluation. The experimental results manifest the search operation can be done in 60 milliseconds using an off-the-shelf moderate PC.
机译:随着云计算的普及,越来越多的敏感信息已外包到云​​中。一种可以保护数据隐私的简单方法是在外包之前对数据进行加密。最近,已经提出了许多可搜索的加密方案,以允许用户对加密的数据执行基于关键字的搜索。但是,用户仅依靠基于关键字的搜索就可以从大量数据中准确找到所有感兴趣的文件,这是不同的。在信息检索领域,全文检索是一种有效的信息检索技术,可以对大量Web数据进行有效搜索。不幸的是,当将其应用于云范例时,对加密的云数据的全文检索还没有得到很好的研究。全文检索服务需要提取文档内容中的所有单词。现有的可搜索加密方案无法有效地支持庞大的索引词。而且,为了保护用户的隐私,需要保留隐私的全文检索索引。这些问题使得对大量加密的云数据进行有效的全文检索成为一项非常艰巨的任务。在本文中,我们首先为云存储系统中的全文检索建立了一组严格的隐私要求。为了解决这一难题,我们设计了一种基于布隆过滤器的树索引。我们的方案通过提出索引词的隶属熵来微调查询和加密文档之间的相似性。通过我们的安全分析,可以证明我们的方案是安全的。我们通过广泛的实验评估证明了该方案的有效性和效率。实验结果表明,使用现成的中型PC可以在60毫秒内完成搜索操作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号