首页> 外文期刊>Journal of Parallel and Distributed Computing >Parallel algorithms for switching edges in heterogeneous graphs
【24h】

Parallel algorithms for switching edges in heterogeneous graphs

机译:异构图形中切换边的并行算法

获取原文
获取原文并翻译 | 示例

摘要

An edge switch is an operation on a graph (or network) where two edges are selected randomly and one of their end vertices is swapped with each other. Edge switch operations have important applications in graph theory and network analysis, such as in generating random networks with a given degree sequence, modeling and analyzing dynamic networks, and in studying various dynamic phenomena over a network. The recent growth of real-world networks motivates the need for efficient parallel algorithms. The dependencies among successive edge switch operations and the requirement to keep the graph simple (i.e., no self-loops or parallel edges) as the edges are switched lead to significant challenges in designing a parallel algorithm. Addressing these challenges requires complex synchronization and communication among the processors leading to difficulties in achieving a good speedup by parallelization. In this paper, we present distributed memory parallel algorithms for switching edges in massive networks. These algorithms provide good speedup and scale well to a large number of processors. A harmonic mean speedup of 73.25 is achieved on eight different networks with 1024 processors. One of the steps in our edge switch algorithms requires the computation of multinomial random variables in parallel. This paper presents the first non-trivial parallel algorithm for the problem, achieving a speedup of 925 using 1024 processors.
机译:边沿开关是在图形(或网络)上的操作,其中随机选择两个边线,并且它们的一个端点相互交换。边缘交换操作在图论和网络分析中具有重要的应用,例如在生成具有给定度序列的随机网络,对动态网络进行建模和分析以及研究网络上的各种动态现象时。现实世界网络的最新发展激发了对高效并行算法的需求。连续的边沿切换操作之间的依赖性以及在边沿切换时保持图简单(即没有自环或平行边沿)的要求在设计并行算法方面带来了重大挑战。解决这些挑战需要处理器之间复杂的同步和通信,从而导致难以通过并行化实现良好的加速。在本文中,我们提出了用于大规模网络中交换边缘的分布式内存并行算法。这些算法可提供良好的加速效果,并可很好地扩展到大量处理器。在具有1024个处理器的八个不同网络上,谐波平均加速比达到73.25。我们的边缘切换算法中的步骤之一要求并行计算多项式随机变量。本文提出了解决该问题的第一个非平凡并行算法,使用1024个处理器实现了925的加速。

著录项

  • 来源
  • 作者单位

    Department of Computer Science, Virginia Tech, 2202 Kraft Drive, Blacksburg, VA 24061, USA ,Network Dynamics and Simulation Science Laboratory, Biocomplexity Institute of Virginia Tech, 1015 Life Science Circle, Blacksburg, VA 24061, USA;

    Department of Electrical Engineering and Computer Science, Texas A&M University-Kingsville, Kingsville, TX 78363, USA;

    Network Dynamics and Simulation Science Laboratory, Biocomplexity Institute of Virginia Tech, 1015 Life Science Circle, Blacksburg, VA 24061, USA;

    Department of Computer Science, Virginia Tech, 2202 Kraft Drive, Blacksburg, VA 24061, USA ,Network Dynamics and Simulation Science Laboratory, Biocomplexity Institute of Virginia Tech, 1015 Life Science Circle, Blacksburg, VA 24061, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Edge switch; Random network generation; Network dynamics; Multinomial distribution; Parallel algorithms;

    机译:边缘开关;随机网络生成;网络动态;多项式分布并行算法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号