首页> 外文期刊>Journal of Parallel and Distributed Computing >Work efficient parallel algorithms for large graph exploration on emerging heterogeneous architectures
【24h】

Work efficient parallel algorithms for large graph exploration on emerging heterogeneous architectures

机译:在新兴的异构体系结构上进行大图探索的高效工作并行算法

获取原文
获取原文并翻译 | 示例

摘要

Graph algorithms play a prominent role in several fields of sciences and engineering. Notable among them are graph traversal, finding the connected components of a graph, and computing shortest paths. There are several efficient implementations of the above problems on a variety of modern multiprocessor architectures. It can be noticed in recent times that the size of the graphs that correspond to real world datasets has been increasing. Parallelism offers only a limited succor to this situation as current parallel architectures have severe short-comings when deployed for most graph algorithms. At the same time, these graphs are also getting very sparse in nature. This calls for particular solution strategies aimed at processing large, sparse graphs on modern parallel architectures. In this paper, we introduce graph pruning as a technique that aims to reduce the size of the graph. Certain elements of the graph can be pruned depending on the nature of the computation. Once a solution is obtained on the pruned graph, the solution is extended to the entire graph. Towards, this end we investigate pruning based on two strategies that justifies their use in current real world graphs. We apply the above technique on three fundamental graph algorithms: breadth first search (BFS), Connected Components (CC), and All Pairs Shortest Paths (APSP). For experimentations, we use three different sources for real world graphs. To validate our technique, we implement our algorithms on a heterogeneous platform consisting of a multicore CPU and a GPU. On this platform, we achieve an average of 35% improvement compared to state-of-the-art solutions. Such an improvement has the potential to speed up other applications reliant on these algorithms.
机译:图算法在科学和工程学的多个领域中发挥着重要作用。其中值得注意的是图遍历,查找图的连接部分以及计算最短路径。在各种现代的多处理器体系结构上,可以有效地解决上述问题。可以注意到,最近与现实世界数据集相对应的图形的尺寸一直在增加。并行性只能为这种情况提供有限的解决方案,因为当前的并行体系结构在部署到大多数图形算法时都存在严重的缺点。同时,这些图在本质上也变得非常稀疏。这就要求采取特定的解决方案策略,以在现代并行体系结构上处理大型稀疏图。在本文中,我们引入图修剪作为旨在减小图大小的技术。可以根据计算的性质来修剪图形的某些元素。在修剪后的图上获得解决方案后,该解决方案将扩展到整个图。为此,我们将基于两种策略研究修剪,以证明它们可用于当前的现实世界图形中。我们将上述技术应用于三种基本图形算法:广度优先搜索(BFS),连接组件(CC)和所有对最短路径(APSP)。为了进行实验,我们使用三种不同的来源来绘制真实世界的图形。为了验证我们的技术,我们在由多核CPU和GPU组成的异构平台上实现算法。在这个平台上,与最新解决方案相比,我们平均可提高35%。这种改进有可能加速依赖于这些算法的其他应用程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号