首页> 外文期刊>Journal of Parallel and Distributed Computing >Knowledge-driven machine learning based framework for early-stage disease risk prediction in edge environment
【24h】

Knowledge-driven machine learning based framework for early-stage disease risk prediction in edge environment

机译:基于知识驱动的机器学习的边缘环境早期疾病风险预测框架

获取原文
获取原文并翻译 | 示例

摘要

Early-stage disease risk prediction can be beneficial to improve the health of the mass and can reduce the economic burden of late treatment. Machine learning has played a pivotal role in predictive systems, which requires achieving a specific degree of accuracy for healthcare systems. Most recently researchers have found the necessity of bridging between epidemiology and machine learning classifications toward health risk prediction. This work proposes an epidemiology knowledge-driven unique model that follows the principle of association rule-based ontology to select features and classification techniques. The goal of this approach is to generalize a framework for future robust systems to predict the likelihood of diseases, which can be executed in the edge computing environment. The framework introduces epidemiological library and structured attribute set along with the library of precaution to derive the disease risk-prediction process. To investigate the adoption of the epidemiology knowledge-driven model, we considered a real dataset of early-stage likelihood prediction of diabetes and carried out a set of experiments for highlighting the significance of several epidemiological factors. The classification aspect of the framework is further compared with widely accepted approaches for machine learning based healthcare, which shows the novelty of the proposed model.
机译:早期疾病风险预测可以有利于提高质量的健康,可以减少晚期治疗的经济负担。机器学习在预测系统中发挥了关键作用,这需要实现医疗系统的特定准确度。最近的研究人员已经发现了对健康风险预测的流行病学和机器学习分类之间的必要性。这项工作提出了一种流行病学知识驱动的独特模型,遵循基于关联规则的本体的原理,以选择功能和分类技术。这种方法的目标是概括一个框架,用于将来的强大系统预测疾病的可能性,这可以在边缘计算环境中执行。该框架介绍了流行病学图书馆和结构性属性,以及预防疾病风险预测过程的预防措施。为了调查流行病学知识驱动的模型,我们考虑了糖尿病早期似然预测的真实数据集,并进行了一组实验,以突出几种流行病学因素的重要性。框架的分类方面进一步比较了基于机器学习的医疗保健的广泛接受的方法,这示出了所提出的模型的新颖性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号