首页> 外文期刊>Journal of Parallel and Distributed Computing >Troodon: A machine-learning based load-balancing application scheduler for CPU-GPU system
【24h】

Troodon: A machine-learning based load-balancing application scheduler for CPU-GPU system

机译:TROODON:用于CPU-GPU系统的基于机器学习的负载平衡应用调度程序

获取原文
获取原文并翻译 | 示例

摘要

Heterogeneous computing machines consisting of a CPU and one or more GPUs are increasingly being used today because of their higher performance-cost ratio and lower energy consumption. To program such heterogeneous systems, OpenCL has become an industry standard due to the portability across various computing architectures. To exploit the computing capabilities of heterogeneous systems, application developers are porting their cluster and Cloud applications using OpenCL. With the increasing number of such applications, the use of shared accelerating computing devices (such as CPUs and GPUs) should be managed using an efficient load-balancing scheduling heuristic capable of reducing execution time, increasing throughput with high device utilization. Mostly, the OpenCL applications are suited (execute faster) on a specific computing device (CPU or GPU) and with varying data-sizes the speedup obtained by an application on the suitable device varies too. Applications' mapping to computing devices without considering device suitability and obtainable speedup on a suitable device leads to sub-optimal execution time, lower throughput and load imbalance. Therefore, an application scheduler should consider both the device-suitability and speedup variation for scheduling decisions leading to a reduction in execution time and an increase in throughput. In this paper, we present a novel load-balancing scheduling heuristic named as Troodon that considers machine learning based device-suitability model that classify OpenCL applications into either CPU suitable or GPU suitable. Moreover, a speedup predictor that predicts the amount of speedup that jobs will obtain when executed on a suitable device is also part of the Troodon. Troodon incorporates the E-OSched scheduling mechanism to map jobs on CPU and GPUs in a load balanced way. This results in reduced applications execution time, increased system throughput, and improved device utilization. We evaluate the proposed scheduler using a large number of data-parallel applications and compared with several other state-of-the-art scheduling heuristics. The experimental evaluation has demonstrated that the proposed scheduler outperformed the existing heuristics and reduced the application execution time up to 38% with increased system throughput and device utilization. (C) 2019 Elsevier Inc. All rights reserved.
机译:由于其性能成本比和降低能耗而越来越多地使用由CPU和一个或多个GPU组成的异构计算机。为了编程此类异构系统,OpenCL已成为各种计算架构的可移植性的行业标准。为了利用异构系统的计算能力,应用程序开发人员正在使用OpenCL移植其群集和云应用程序。随着越来越多的这些应用程序,应该使用能够减少执行时间的有效负载平衡调度启发式来管理共享加速计算设备(例如CPU和GPU),提高具有高设备利用率的吞吐量。大多数情况下,OpenCL应用程序在特定计算设备(CPU或GPU)上适合(执行更快),并且通过在合适的设备上的应用程序获得的加速度变化了不同的数据大小。应用程序映射到计算设备而不考虑设备适用性并获得合适的设备上的加速,导致次优执行时间,降低吞吐量和负载不平衡。因此,应用调度程序应考虑用于调度决策的设备适用性和加速变化,从而导致执行时间的减少和吞吐量的增加。在本文中,我们提出了一种名为Troodon的新颖的负载平衡调度启发式,该机会考虑基于机器学习的设备适用性模型,该模型将OpenCL应用程序分类为适合或GPU的CPU。此外,预测在合适的设备上执行时将获得作业的加速量的加速预测器也是Troodon的一部分。 Troodon包含电子osched调度机制,以以负载均衡方式映射CPU和GPU上的作业。这导致应用程序执行时间减少,提高了系统吞吐量和改进的设备利用率。我们使用大量数据并行应用程序评估所提出的调度程序,并与其他几个最先进的调度启发式进行比较。实验评估表明,所提出的调度员优于现有的启发式,并将应用程序执行时间减少到38%,随着系统吞吐量和设备利用率提高。 (c)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号