首页> 外文期刊>Journal of Parallel and Distributed Computing >Troodon: A machine-learning based load-balancing application scheduler for CPU-GPU system
【24h】

Troodon: A machine-learning based load-balancing application scheduler for CPU-GPU system

机译:Troodon:用于CPU-GPU系统的基于机器学习的负载平衡应用程序调度程序

获取原文
获取原文并翻译 | 示例

摘要

Heterogeneous computing machines consisting of a CPU and one or more GPUs are increasingly being used today because of their higher performance-cost ratio and lower energy consumption. To program such heterogeneous systems, OpenCL has become an industry standard due to the portability across various computing architectures. To exploit the computing capabilities of heterogeneous systems, application developers are porting their cluster and Cloud applications using OpenCL. With the increasing number of such applications, the use of shared accelerating computing devices (such as CPUs and GPUs) should be managed using an efficient load-balancing scheduling heuristic capable of reducing execution time, increasing throughput with high device utilization. Mostly, the OpenCL applications are suited (execute faster) on a specific computing device (CPU or GPU) and with varying data-sizes the speedup obtained by an application on the suitable device varies too. Applications' mapping to computing devices without considering device suitability and obtainable speedup on a suitable device leads to sub-optimal execution time, lower throughput and load imbalance. Therefore, an application scheduler should consider both the device-suitability and speedup variation for scheduling decisions leading to a reduction in execution time and an increase in throughput. In this paper, we present a novel load-balancing scheduling heuristic named as Troodon that considers machine learning based device-suitability model that classify OpenCL applications into either CPU suitable or GPU suitable. Moreover, a speedup predictor that predicts the amount of speedup that jobs will obtain when executed on a suitable device is also part of the Troodon. Troodon incorporates the E-OSched scheduling mechanism to map jobs on CPU and GPUs in a load balanced way. This results in reduced applications execution time, increased system throughput, and improved device utilization. We evaluate the proposed scheduler using a large number of data-parallel applications and compared with several other state-of-the-art scheduling heuristics. The experimental evaluation has demonstrated that the proposed scheduler outperformed the existing heuristics and reduced the application execution time up to 38% with increased system throughput and device utilization. (C) 2019 Elsevier Inc. All rights reserved.
机译:由于具有更高的性能成本比和更低的能耗,如今越来越多地使用由CPU和一个或多个GPU组成的异构计算机。为了编程这样的异构系统,由于跨各种计算体系结构的可移植性,OpenCL已成为行业标准。为了利用异构系统的计算能力,应用程序开发人员正在使用OpenCL移植其集群和云应用程序。随着此类应用程序数量的增加,应使用有效的负载平衡调度试探法来管理共享加速计算设备(例如CPU和GPU)的使用,该试探法能够减少执行时间,并通过高设备利用率提高吞吐量。通常,OpenCL应用程序适合(更快地执行)在特定的计算设备(CPU或GPU)上,并且随着数据大小的变化,在合适的设备上由应用程序获得的加速也会变化。应用程序在不考虑设备适用性和在合适设备上获得加速的情况下映射到计算设备会导致次优执行时间,较低吞吐量和负载不平衡。因此,应用程序调度程序应同时考虑设备的适用性和加速变化,以调度决策,从而缩短执行时间并提高吞吐量。在本文中,我们提出了一种名为Troodon的新颖的负载均衡调度启发式方法,该启发式方法考虑了基于机器学习的设备适用性模型,该模型将OpenCL应用程序分为适合的CPU或适合的GPU。此外,Troodon的一部分是加速预测器,该预测器预测作业在合适的设备上执行时将获得的加速量。 Troodon集成了E-OSched调度机制,以负载平衡的方式在CPU和GPU上映射作业。这样可以减少应用程序的执行时间,提高系统吞吐量,并提高设备利用率。我们使用大量的数据并行应用程序评估提出的调度程序,并与其他几种最新的调度启发式方法进行比较。实验评估表明,随着系统吞吐量和设备利用率的提高,拟议的调度程序优于现有的启发式方法,并将应用程序执行时间减少了38%。 (C)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号