首页> 外文期刊>Journal of Parallel and Distributed Computing >Dynamic replication and migration of data objects with hot-spot and cold-spot statuses across storage data centers
【24h】

Dynamic replication and migration of data objects with hot-spot and cold-spot statuses across storage data centers

机译:在存储数据中心之间动态复制和迁移具有热点和冷点状态的数据对象

获取原文
获取原文并翻译 | 示例

摘要

Cloud Storage Providers (CSPs) offer geographically dispersed data stores providing several storage classes with different prices. A vital problem faced by application providers is how to exploit price differences across data stores to minimize monetary cost of applications that include hot-spot objects that are accessed frequently and cold-spot objects that are often accessed far less. This monetary cost consists of replica creation, storage, Put, Get, and potential migration costs. To optimize such costs, we first propose the optimal solution that leverages dynamic and linear programming techniques with the assumption that the workload on objects is known in advance. We also propose a lightweight heuristic solution, inspired from an approximate algorithm for the Set Covering Problem, which does not make any assumption on the object workload. This solution jointly determines object replicas location, object replicas migration times, and redirection of Get (read) requests to object replicas so that the monetary cost of data storage management is optimized while the user-perceived latency is satisfied. We evaluate the effectiveness of the proposed lightweight algorithm in terms of cost savings via extensive simulations using CloudSim simulator and traces from Twitter. In addition, we have built a prototype system running over Amazon Web Service (AWS) and Microsoft Azure to evaluate the duration of objects migration within and across regions. (C) 2018 Elsevier Inc. All rights reserved.
机译:云存储提供商(CSP)提供了地理位置分散的数据存储,提供了几种价格不同的存储类别。应用程序提供商面临的一个关键问题是如何利用数据存储之间的价格差异来最大程度地减少应用程序的货币成本,这些应用程序包括经常访问的热点对象和经常访问较少的冷点对象。此金钱成本包括副本的创建,存储,放置,获取和潜在的迁移成本。为了优化这些成本,我们首先提出一种利用动态和线性编程技术的最佳解决方案,并假设对象的工作量是事先已知的。我们还提出了一种轻量级的启发式解决方案,该启发式解决方案的灵感来自于“设置覆盖问题”的近似算法,该算法没有对对象工作负载进行任何假设。此解决方案共同确定对象副本的位置,对象副本的迁移时间以及将Get(读取)请求重定向到对象副本,以便在满足用户感知的延迟的同时优化数据存储管理的资金成本。通过使用CloudSim模拟器和Twitter的跟踪进行广泛的模拟,我们在节省成本方面评估了建议的轻量级算法的有效性。此外,我们还构建了一个在Amazon Web Service(AWS)和Microsoft Azure上运行的原型系统,以评估对象在区域内和区域间迁移的持续时间。 (C)2018 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号