首页> 外文期刊>Journal of Parallel and Distributed Computing >Dynamic replication and migration of data objects with hot-spot and cold-spot statuses across storage data centers
【24h】

Dynamic replication and migration of data objects with hot-spot and cold-spot statuses across storage data centers

机译:数据对象的动态复制和迁移,以及跨存储数据中心的热点和冷点状态

获取原文
获取原文并翻译 | 示例

摘要

Cloud Storage Providers (CSPs) offer geographically dispersed data stores providing several storage classes with different prices. A vital problem faced by application providers is how to exploit price differences across data stores to minimize monetary cost of applications that include hot-spot objects that are accessed frequently and cold-spot objects that are often accessed far less. This monetary cost consists of replica creation, storage, Put, Get, and potential migration costs. To optimize such costs, we first propose the optimal solution that leverages dynamic and linear programming techniques with the assumption that the workload on objects is known in advance. We also propose a lightweight heuristic solution, inspired from an approximate algorithm for the Set Covering Problem, which does not make any assumption on the object workload. This solution jointly determines object replicas location, object replicas migration times, and redirection of Get (read) requests to object replicas so that the monetary cost of data storage management is optimized while the user-perceived latency is satisfied. We evaluate the effectiveness of the proposed lightweight algorithm in terms of cost savings via extensive simulations using CloudSim simulator and traces from Twitter. In addition, we have built a prototype system running over Amazon Web Service (AWS) and Microsoft Azure to evaluate the duration of objects migration within and across regions. (C) 2018 Elsevier Inc. All rights reserved.
机译:云存储提供商(CSP)提供地理上分散的数据商店,提供具有不同价格的多个存储类。应用程序提供者面临的重要问题是如何利用数据商店的价格差异,以最大限度地减少包含频繁和冷点对象的热点对象的应用程序的货币成本,这些对象经常被访问的频繁访问。此货币成本包括复制品创建,存储,放置,获得和潜在迁移成本。为了优化此类成本,我们首先提出了利用动态和线性规划技术的最佳解决方案,假设对象上的工作负载是预先已知的。我们还提出了一种轻量级启发式解决方案,它激发了一个近似算法的集合覆盖问题,它不会对对象工作负载进行任何假设。此解决方案共同确定对象副本,对象副本迁移时间和获取(读取)请求的重定向到对象副本,以便在满足用户感知的延迟时优化数据存储管理的货币成本。我们通过使用Cloudsim Simulator和Twitter的痕迹,通过广泛的模拟评估提出的轻量级算法的有效性。此外,我们还建立了一个超越亚马逊Web服务(AWS)和Microsoft Azure的原型系统,以评估在区域内和跨区域内的对象迁移的持续时间。 (c)2018 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号