首页> 外文期刊>Journal of Parallel and Distributed Computing >Accelerating subset sum and lattice based public-key cryptosystems with multi-core CPUs and GPUs
【24h】

Accelerating subset sum and lattice based public-key cryptosystems with multi-core CPUs and GPUs

机译:利用多核CPU和GPU加速基于子集和和格的公钥密码系统

获取原文
获取原文并翻译 | 示例

摘要

Post-quantum cryptosystems based on subset sum and lattice problems have gained much attention from researchers due to their simple construction, their resistance to quantum attacks, the new potential applications they provide, and above all, the mathematical security proofs that rigorously relate them to computational hard problems. However, the computational complexity of these cryptosystems is still high compared to classic number-theoretical ones, which may impede their adoption on a large scale. We studied the performance of three public-key cryptosystems based on subset sum, learning with errors and ring learning with errors problems. We provide a systematic study for choosing their parameters to guarantee sufficient security levels and detail an asymptotic comparison between them in terms of storage and running time complexities. We accelerate the running time of these cryptosystems by exploiting the inherent parallelism in computations through a GPGPU-based parallel implementation. The cryptosystems are implemented using C++ on Intel(R) Xeon(R) multi-core 64-bit processors machine with CUDA-enabled Tesla K80 GPUs. The parallel implementation is based on OpenCL framework and can run on arbitrary hardware platform accelerators with minor changes. Several optimizations and efficient algorithms were used to compute the core operations in each cryptosystem to achieve optimum performance. The ring learning with errors based cryptosystem showed the best performance while the Subset Sum cryptosystem showed the highest speedup gain for the encryption primitive. (C) 2018 Elsevier Inc. All rights reserved.
机译:基于子集和和晶格问题的后量子密码系统由于其简单的结构,对量子攻击的抵抗力,它们提供的新的潜在应用而受到了研究人员的广泛关注,最重要的是,其将数学安全证明与计算严格地联系在一起。困难的问题。但是,与经典的数字理论系统相比,这些密码系统的计算复杂度仍然很高,这可能会阻碍其大规模采用。我们基于子集和,带错误学习和带错误问题的环学习研究了三种公钥密码系统的性能。我们为选择它们的参数以提供足够的安全级别提供了系统的研究,并详细说明了它们之间在存储和运行时间复杂性方面的渐近比较。我们通过基于GPGPU的并行实现在计算中利用固有的并行性,从而加快了这些密码系统的运行时间。加密系统是在具有CUDA功能的Tesla K80 GPU的Intel®Xeon®多核64位处理器机器上使用C ++实现的。并行实现基于OpenCL框架,并且可以在稍作更改的情况下在任意硬件平台加速器上运行。几种优化和高效算法用于计算每个密码系统的核心操作,以实现最佳性能。带有基于错误的密码系统的环学习显示出最佳性能,而子集和密码系统显示出加密原语的最高加速增益。 (C)2018 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号