首页> 外文期刊>Journal of Parallel and Distributed Computing >A novel cooperative accelerated parallel two-list algorithm for solving the subset-sum problem on a hybrid CPU-GPU cluster
【24h】

A novel cooperative accelerated parallel two-list algorithm for solving the subset-sum problem on a hybrid CPU-GPU cluster

机译:解决混合CPU-GPU集群子和问题的新型协同加速并行二列表算法

获取原文
获取原文并翻译 | 示例

摘要

Many parallel algorithms have recently been developed to accelerate solving the subset-sum problem on a heterogeneous CPU-GPU system. However, within each compute node, only one CPU core is used to control one GPU and all the remaining CPU cores are in idle state, which leads to a large number of CPU cores being wasted. In this paper, based on a cost-optimal parallel two-list algorithm, we propose a novel heterogeneous cooperative computing approach to solve the subset-sum problem on a hybrid CPU-GPU cluster, which can make full use of all available computational resources of a cluster. The unbalanced workload distribution and the huge communication overhead are two main obstacles for the heterogeneous cooperative computing. In order to assign the most suitable workload to each compute node and reasonably partition it between CPU and GPU within each node, and minimize the inter-node and intra-node communication costs, we design a communication-avoiding workload distribution scheme suitable for the parallel two-list algorithm. According to this scheme, we provide an efficient heterogeneous cooperative implementation of the algorithm. A series of experiments are conducted on a hybrid CPU-GPU cluster, where each node has two 6-core CPUs and one GPU. The results show that the heterogeneous cooperative computing significantly outperforms the CPU-only or CPU-only computing.
机译:最近开发了许多并行算法,以加速解决异构CPU-GPU系统上的子集和问题。但是,在每个计算节点内,只有一个CPU内核用于控制一个GPU,其余所有CPU内核都处于空闲状态,这导致大量CPU内核被浪费了。本文基于成本最优的并行二列表算法,提出了一种新颖的异构协同计算方法来解决混合CPU-GPU集群上的子集和问题,该方法可以充分利用CPU的所有可用计算资源。一个集群。工作负载分配不平衡和巨大的通信开销是异构协作计算的两个主要障碍。为了将最合适的工作负载分配给每个计算节点,并在每个节点内的CPU和GPU之间合理地分配工作负载,并最大程度地减少节点间和节点内的通信成本,我们设计了一种适合并行处理的避免通信的工作负载分配方案两列表算法。根据该方案,我们提供了该算法的高效异构协作实现。在混合CPU-GPU集群上进行了一系列实验,其中每个节点具有两个6核CPU和一个GPU。结果表明,异构协作计算明显优于仅CPU或仅CPU的计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号