首页> 外文期刊>Journal of Parallel and Distributed Computing >Stack splitting: A technique for efficient exploitation of search parallelism on share-nothing platforms
【24h】

Stack splitting: A technique for efficient exploitation of search parallelism on share-nothing platforms

机译:堆栈拆分:一种在无共享平台上有效利用搜索并行性的技术

获取原文
获取原文并翻译 | 示例

摘要

We study the problem of exploiting parallelism from search-based AI systems on share-nothing platforms, i.e., platforms where different machines do not have access to any form of shared memory. We propose a novel environment representation technique, called stack-splitting, which is a modification of the well-known stack-copying technique, that enables the efficient exploitation of or-parallelism from AI systems on distributed-memory machines. Stack-splitting, coupled with appropriate scheduling strategies, leads to reduced communication during distributed execution and effective distribution of larger grain-sized work to processors. The novel technique can also be implemented on shared-memory machines and it is quite competitive. In this paper we present a distributed implementation of or-parallelism based on stack-splitting including results. Our results suggest that stack-splitting is an effective technique for obtaining high performance parallel AI systems on shared-memory as well as distributed-memory multiprocessors.
机译:我们研究了在无共享平台(即不同机器无法访问任何形式的共享内存的平台)上从基于搜索的AI系统中利用并行性的问题。我们提出了一种新颖的环境表示技术,称为堆栈拆分,它是对众所周知的堆栈复制技术的修改,可以有效利用分布式内存机器上AI系统的或并行性。堆栈拆分与适当的调度策略相结合,可减少分布式执行期间的通信,并将较大粒度的工作有效分配给处理器。这项新技术也可以在共享内存机器上实现,并且具有相当的竞争力。在本文中,我们提出了基于堆栈拆分(包括结果)的或并行的分布式实现。我们的结果表明,堆栈拆分是一种用于在共享内存以及分布式内存多处理器上获得高性能并行AI系统的有效技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号