首页> 外文期刊>Journal of Optimization Theory and Applications >Augmented Lagrangian Algorithms Based on the Spectral Projected Gradient Method for Solving Nonlinear Programming Problems
【24h】

Augmented Lagrangian Algorithms Based on the Spectral Projected Gradient Method for Solving Nonlinear Programming Problems

机译:基于谱投影梯度法的增强拉格朗日算法求解非线性规划问题

获取原文
获取原文并翻译 | 示例

摘要

The spectral projected gradient method SPG is an algorithm for large-scale bound-constrained optimization introduced recently by Birgin, Martínez, and Raydan. It is based on the Raydan unconstrained generalization of the Barzilai-Borwein method for quadratics. The SPG algorithm turned out to be surprisingly effective for solving many large-scale minimization problems with box constraints. Therefore, it is natural to test its perfomance for solving the sub-problems that appear in nonlinear programming methods based on augmented Lagrangians. In this work, augmented Lagrangian methods which use SPG as the underlying convex-constraint solver are introduced (ALSPG) and the methods are tested in two sets of problems. First, a meaningful subset of large-scale nonlinearly constrained problems of the CUTE collection is solved and compared with the perfomance of LANCELOT. Second, a family of location problems in the minimax formulation is solved against the package FFSQP.
机译:频谱投影梯度法SPG是Birgin,Martínez和Raydan最近推出的一种用于大规模约束约束优化的算法。它基于Barzilai-Borwein方法对二次方程的Raydan无约束概括。事实证明,SPG算法对于解决具有框约束的许多大规模最小化问题非常有效。因此,很自然地需要测试其性能以解决基于增强拉格朗日方法的非线性编程方法中出现的子问题。在这项工作中,引入了使用SPG作为底层凸约束求解器的增强拉格朗日方法(ALSPG),并在两组问题中对该方法进行了测试。首先,解决了CUTE集合的大规模非线性约束问题的有意义的子集,并将其与LANCELOT的性能进行了比较。其次,针对FFSQP软件包解决了minimax公式中的一系列位置问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号