首页> 外文期刊>Journal of Optimization Theory and Applications >New Sequential Quadratically-Constrained Quadratic Programming Method of Feasible Directions and Its Convergence Rate
【24h】

New Sequential Quadratically-Constrained Quadratic Programming Method of Feasible Directions and Its Convergence Rate

机译:可行方向的顺序二次约束二次规划方法及其收敛速度

获取原文
获取原文并翻译 | 示例

摘要

This paper discusses optimization problems with nonlinear inequality constraints and presents a new sequential quadratically-constrained quadratic programming (NSQCQP) method of feasible directions for solving such problems. At each iteration. the NSQCQP method solves only one subproblem which consists of a convex quadratic objective function, convex quadratic equality constraints, as well as a perturbation variable and yields a feasible direction of descent (improved direction). The following results on the NSQCQP are obtained: the subproblem solved at each iteration is feasible and solvable: the NSQCQP is globally convergent under the Mangasarian-Fromovitz constraint qualification (MFCQ); the improved direction can avoid the Maratos effect without the assumption of strict complementarity; the NSQCQP is superlinearly and quasiquadratically convergent under some weak assumptions without thestrict complementarity assumption and the linear independence constraint qualification (LICQ).
机译:本文讨论了具有非线性不等式约束的优化问题,并提出了一种求解此类问题的可行方向的顺序二次约束二次规划(NSQCQP)方法。在每次迭代中。 NSQCQP方法仅解决一个子问题,该子问题由凸二次目标函数,凸二次等式约束以及扰动变量组成,并产生可行的下降方向(改进的方向)。在NSQCQP上获得以下结果:在每次迭代中求解的子问题是可行且可解决的:NSQCQP在Mangasarian-Fromovitz约束条件(MFCQ)下是全局收敛的;如果没有严格的互补性,改进的方向可以避免马拉托斯效应。在没有严格互补假设和线性独立约束条件(LICQ)的一些弱假设下,NSQCQP具有超线性和拟二次收敛性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号